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Foreword
This document is a speculative specification and reference of a proof format
for SMT solvers. The format consists of a language to express proofs and
a set of proof rules. On the one side, the language is inspired by natural-
deduction and is based on the widely used SMT-LIB format. The language
also includes a flexible mechanism to reason about bound variables which
allows fine-grained preprocessing proofs. On the other side, the rules are
structured around resolution and the introduction of theory lemmas, in the
same way as CDCL(T)-based SMT solvers.
The specification is not yet cast in stone, but it will evolve over time. It

emerged from a list of proof rules used by the SMT solver veriT collected
in a document called “Proofonomicon”. Following the fate presupposed by
its name, it informally circulated among researchers interested in the proofs
produced by veriT after a few months. We now polished this document and
gave it a respectable name.
Instead of aiming for theoretical purity, our approach is pragmatic: the

specification describes the format as it is in use right now. It will develop
in parallel with practical support for the format within SMT solvers, proof
checkers, and other tools. We believe it is not a perfect specification that
fosters the adaption of a format, but great tooling. This document will be a
guide to develop such tools.

Nevertheless, it not only serves as a norm to ensure compatibility between
tools, it also allows us to uncover the unsatisfactory aspects that would oth-
erwise be hidden deep within the nooks and crannies of solver and checker
implementations. Every uncovered problem presents an opportunity to im-
prove the format. The authors of this document overlap with the authors
of those tools and we are committed to improve the tools, the format, and
ultimately the specification together. This document is also an invitation to
other researchers to join these efforts. To read the reference and provide feed-
back, or to even implement support for Alethe into their own tools. Please
get in touch!

The authors.

1 Introduction
This document is a reference of the Alethe1 proof format. Alethe is designed to be a
flexible format to represent unsatisfiability proofs generated by SMT solvers. Alethe
proofs can be consumed by other systems, such as interactive theorem provers or proof
checkers. The design is based on natural-deduction style structure and rules generating

1Alethe is a genus of small birds that occur in West Africa [9]. The name was chosen because it resembles
the Greek word αλήθεια (alítheia) – truth.
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and operating on first-order clauses. The Alethe proof format consists of two parts: the
proof language based on SMT-LIB and a collection of proof rules. Section 2 introduces
the language. First as an abstract language, then as a concrete syntax. Section 3 then
discusses an abstract procedure to check Alethe proofs. This abstract checking procedure
specifies the semantics of Alethe proofs. The Alethe proof rules are discussed in two
sections. First, Section 4 discusses the core concepts behind the rules. Second, Section 5
presents a list of all proof rules currently used by veriT.

Alethe follows a few core design principles. First, proofs should be easy to understand
by humans to ensure working with Alethe proofs is easy. Second, the language of the
format should directly correspond to the language used by the solver. Since many solvers
use the SMT-LIB language, Alethe also uses this language. Therefore, Alethe’s base logic
is the many-sorted first-order logic of SMT-LIB. Third, the format should be uniform
for all theories used by SMT solvers. With the exception of clauses for propositional
reasoning, there is no dedicated syntax for any theory.

The Alethe format was originally developed for the SMT solver veriT. If requested by
the user, veriT outputs a proof if it can deduce that the input problem is unsatisfiable. In
proof production mode, veriT supports the theory of uninterpreted functions, the theory
of linear integer and real arithmetic, and quantifiers. The SMT solver cvc5 [1] (the
successor of CVC4) supports Alethe experimentally as one of its multiple proof output
formats. Alethe proofs can be reconstructed by the smt tactic of the proof assistant
Isabelle/HOL [7, 8]. The SMTCoq tool can reconstruct an older version of the format in
the proof assistant Coq [6]. An effort to update the tool to the latest version of Alethe
is ongoing. Furthermore, Carcara is an experimental high-performance proof checker
written in Rust.2

In addition to this reference, the proof format has been discussed in past publications,
which provide valuable background information. The core of the format goes back to 2011
when two publications at the PxTP workshop outlined the fundamental ideas behind the
format [4] and proposed rules for quantifier instantiation [5]. More recently, the format
has gained support for reasoning typically used for processing, such as skolemization,
substitutions, and other manipulations of bound variables [2].

1.1 Notations
The notation used in this document is similar to the notation used by the SMT-LIB
standard. The Alethe proof format uses the SMT-LIB logic. Since the SMT-LIB language
is based on S-expressions, SMT-LIB formulas are written using a λ-calculus style. That
is, instead of 𝑓(1, 2), we write (𝑓 1 2). However, connectives that are usually written
using infix notation, also use infix notation here. That is, we write 𝑡1 ∨ 𝑡2, not (∨ 𝑡1 𝑡2).

We use 𝑥, 𝑦, 𝑧 to indicate variables, 𝑓, 𝑔 for functions, and 𝑃 ,𝑄 for predicates (functions
with co-domain sort Bool. To indicate terms we use 𝑡, 𝑢 and to indicate formulas (terms
of sort Bool) we use 𝜑,𝜓. To distinguish syntactic equality and the SMT-LIB equality
predicate, we write = for the former, and ≈ for the latter. We will write pre-defined

2Available at https://github.com/ufmg-smite/carcara.
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SMT-LIB symbols, such as sorts and functions, in bold (e.g., Bool, ite).
We will use 𝜃 to denote a substitution. The notation [𝑥1 ↦ 𝑡1,…, 𝑥𝑛 ↦ 𝑡𝑛] denotes the

substitution that maps 𝑥𝑖 to 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and corresponds to the identity function
for all other variables. If 𝜃 and 𝜂 are two substitutions, then 𝜃𝜂 denotes the result of
first applying 𝜃 and then 𝜂 (i.e., 𝜂(𝜃(.))). A substitution can naturally be extended to a
function that maps terms to terms by replacing the occurrences of free variables. The
application of a substitution 𝜃 to a term 𝑡 (i.e., 𝜃(𝑡)) is capture-avoiding; bound variables
in 𝑡 are renamed as necessary.
We write 𝑡[𝑢] for a term that contains the term 𝑢 as a subterm. If 𝑢 is subsequently

replaced by a term 𝑣, we write 𝑡[𝑣] for the new term. We also use this notation with
multiple terms. The notation 𝑡[𝑢1,… , 𝑢𝑛] stands for a term may contain the pairwise
distinct terms 𝑢1,… , 𝑢𝑛. Then, 𝑡[𝑠1,… , 𝑠𝑛] is the respective term where the variables
𝑢1,… , 𝑢𝑛 are simultaneously replaced by 𝑠1,… , 𝑠𝑛. Usually, 𝑢1,… , 𝑢𝑛 will be variables.
Note that we will introduce the Alethe specific notation to write proof steps in the

following sections.

2 The Alethe Language
This section provides an overview of the core concepts of the Alethe language and also
introduces some notation used throughout this chapter. The section first introduces an
abstract notation to write Alethe proofs. Then, it introduces the concrete, SMT-LIB-
based syntax. Finally, we show how a concrete Alethe proof can be checked.

Example 1. The following example shows a simple Alethe proof expressed in the abstract
notation used in this document. It uses quantifier instantiation and resolution to show a
contradiction. The paragraphs below describe the concepts necessary to understand the
proof step by step.

1. ⊳ ∀𝑥. (𝑃 𝑥) assume
2. ⊳ ¬(𝑃𝑎) assume
3. ⊳ ¬(∀𝑥. (𝑃 𝑥)) ∨ (𝑃 𝑎) forall_inst [(𝑥, 𝑎)]
4. ⊳ ¬(∀𝑥. (𝑃 𝑥)), (𝑃 𝑎) (or 3)
5. ⊳ ⊥ (resolution 1, 2, 4)

Many-Sorted First-Order Logic. Alethe builds on the SMT-LIB language. This includes
its many-sorted first-order logic. The available sorts depend on the selected SMT-LIB
theory/logic as well as on those defined by the user, but the distinguished Bool sort is
always available. However, Alethe also extends this logic with Hilbert’s choice operator
𝜀. The term 𝜀𝑥. 𝜑[𝑥] stands for a value 𝑣 such that 𝜑[𝑣] is true if such a value exists.
Any value is possible otherwise. Alethe requires that 𝜀 is functional with respect to
logical equivalence: if for two formulas 𝜑, 𝜓 that contain the free variable 𝑥, it holds
that (∀𝑥. 𝜑 ≈ 𝜓), then (𝜀𝑥. 𝜑) ≈ (𝜀𝑥. 𝜓) must also hold. Note that choice terms can only
appear in Alethe proofs, not in SMT-LIB problems.
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Steps. A proof in the Alethe language is an indexed list of steps. To mimic the concrete
syntax of Alethe proofs, proof steps in the abstract notation have the form

𝑖. 𝑐1, … , 𝑐𝑗 ⊳ 𝑙1,… , 𝑙𝑘 (rule 𝑝1, … , 𝑝𝑛) [𝑎1, … , 𝑎𝑚]

Each step has a unique index 𝑖 ∈ 𝕀, where 𝕀 is a countable infinite set of valid indices.
In the concrete syntax all SMT-LIB symbols are valid indices, but for examples we will
use natural numbers. Furthermore, 𝑙1,… , 𝑙𝑘 is a clause with the literals 𝑙𝑖. It is the
conclusion of the step. If a step has the empty clause as its conclusion (i.e., 𝑘 = 0)
we write ⊥. While this muddles the water a bit with regard to steps which have the
unit clause with the unit literal ⊥ as their conclusion, it simplifies the notation. We
will remark on the difference if it is relevant. The rule name rule is taken from a set of
possible proof rules (see Section 5). Furthermore, each step has a possibly empty set
of premises {𝑝1,… , 𝑝𝑛} ⊆ 𝕀, and a rule-dependent and possibly empty list of arguments
[𝑎1,… , 𝑎𝑚]. The list of premises only references earlier steps, such that the proof forms
a directed acyclic graph. If the list of premises is empty, we will drop the parentheses
around the proof rule. The arguments 𝑎𝑖 are either terms or tuples (𝑥𝑖, 𝑡𝑖) where 𝑥𝑖 is a
variable and 𝑡𝑖 is a term. The interpretation of the arguments is rule specific. The list
𝑐1,… , 𝑐𝑗 is the context of the step. Contexts are discussed below. Every proof ends with
a step that has the empty clause as the conclusion and an empty context. The list of
proof rules in Section 5 also uses this notation to define the proof rules.
The example above consists of five steps. Step 4 and 5 use premises. Since step 3

introduces a tautology, it uses no premises. However, it uses arguments to express the
substitution [𝑥 ↦ 𝑎] used to instantiate the quantifier. Step 4 translates the disjunction
into a clause. In the example above, the contexts are all empty.

Assumptions. An assume step introduces a term as an assumption. The proof starts
with a number of assume steps. Each such step corresponds to an input assertion. Within
a subproof, additional assumptions can be introduced too. In this case, each assumption
must be discharged with an appropriate step. The rule subproof can be used to do
so. In the concrete syntax, assume steps have a dedicated command assume to clearly
distinguish them from normal steps that use the step command (see Section 2.1).
The example above uses two assumptions which are introduced in the first two steps.

Subproofs and Lemmas. Alethe uses subproofs to prove lemmas and to create and
manipulate the context. To prove lemmas, a subproof can introduce local assumptions.
The subproof rule discharges the local assumptions. From an assumption 𝜑 and a formula
𝜓 proved from 𝜑, the subproof rule deduces the clause ¬𝜑,𝜓 that discharges the local
assumption 𝜑. A subproof step cannot use a premise from a subproof nested within the
current subproof.

Subproofs are also used to manipulate the context. As the example below shows, the
abstract notation denotes subproofs by a frame around the steps in the subproof. In this
case the subproof concludes with a step that does not use the subproof rule, but another
rule, such as the bind rule.
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Example 2. This example shows a refutation of the formula (2 + 2) ≈ 5. The proof
uses a subproof to prove the lemma ((2 + 2) ≈ 5) ⇒ 4 ≈ 5.

1. ⊳ (2 + 2) ≈ 5 assume
2. ⊳ (2 + 2) ≈ 5 assume
3. ⊳ (2 + 2) ≈ 4 sum_simplify
4. ⊳ 4 ≈ 5 (trans 2, 3)
5. ⊳ ¬((2 + 2) ≈ 5), 4 ≈ 5 subproof
6. ⊳ (4 ≈ 5) ≈ ⊥ eq_simplify
7. ⊳ ¬((4 ≈ 5) ≈ ⊥), ¬(4 ≈ 5),⊥ equiv_pos2
8. ⊳ ⊥ (resolution 1, 5, 6, 7)

Contexts. A specificity of the Alethe proofs is the step context. Alethe contexts are a
general mechanism to write substitutions and to change them by attaching new elements.
A context is a possibly empty list 𝑐1,… , 𝑐𝑙, where each element is either a variable or a
variable-term tuple denoted 𝑥𝑖 ↦ 𝑡𝑖. In the first case, we say that 𝑐𝑖 fixes the variable.
The second case is a mapping. Throughout this chapter, Γ denotes an arbitrary context.

Every context Γ induces a capture-avoiding substitution subst(Γ). If Γ is the empty
list, subst(Γ) is the empty substitution, i.e, the identity function. The first case fixes 𝑥𝑛
and allows the context to shadow a previously defined substitution for 𝑥𝑛:

subst([𝑐1,… , 𝑐𝑛−1, 𝑥𝑛]) is subst([𝑐1,… , 𝑐𝑛−1]), but 𝑥𝑛 maps to 𝑥𝑛.

When Γ ends in a mapping, the substitution is extended with this mapping:

subst([𝑐1,… , 𝑐𝑛−1, 𝑥𝑛 ↦ 𝑡𝑛]) = subst([𝑐1,… , 𝑐𝑛−1]) ∘ {𝑥𝑛 ↦ 𝑡𝑛}.

The following example illustrates this idea.

subst([𝑥 ↦ 7, 𝑥 ↦ 𝑔(𝑥)]) = {𝑥 ↦ 𝑔(7)}
subst([𝑥 ↦ 7, 𝑥, 𝑥 ↦ 𝑔(𝑥)]) = {𝑥 ↦ 𝑔(𝑥)}

Contexts are used to express proofs about the preprocessing of terms. The conclusions
of proof rules that use contexts always have the form

i. Γ ⊳ 𝑡 ≈ 𝑢 (rule, …)

where the term 𝑡 is the original term, and 𝑢 is the term after preprocessing. Tautologies
with contexts correspond to judgments ⊨𝑇 subst(Γ)(𝑡) ≈ 𝑢. Note that, some proof rules
require an empty context. In the list of proof rules in Section 5 this is indicated by
omitting the Γ.

The substitution induced by Γ is capture-avoiding. Hence, some bound variables could
be renamed in subst(Γ)(𝑡) with respect to the original term 𝑡. A consequence of this is
that steps that use a context must be checked under α-equivalence. The bind rule can be
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used to express renaming of bound variables explicitly. The refl rule, on the other hand,
can be exploited to directly rename bound variables without an explicit proof.
Formally, the context can be translated to λ-abstractions and applications. This is

discussed in Section 3.

Example 3. This example shows a proof that uses a subproof with a context to rename
a bound variable.

1. ⊳ ∀𝑥. (𝑃 𝑥) assume
2. ⊳ ¬(∀𝑦. (𝑃 𝑦)) assume
3. 𝑦, 𝑥 ↦ 𝑦 ⊳ 𝑥 ≈ 𝑦 refl
4. 𝑦, 𝑥 ↦ 𝑦 ⊳ (𝑃𝑥) ≈ (𝑃 𝑦) (cong 3)
5. ⊳ ∀𝑥. (𝑃 𝑥) ≈ ∀𝑦. (𝑃 𝑦) bind
6. ⊳ ¬(∀𝑥. (𝑃 𝑥) ≈ ∀𝑦. (𝑃 𝑦)), ¬(∀𝑥. (𝑃 𝑥)), (∀𝑦. (𝑃 𝑦)) equiv_pos2
7. ⊳ ⊥ (resolution 1, 2, 5, 6)

Implicit Reordering of Equalities. In addition to the explicit steps, solvers might reorder
equalities, i.e., apply symmetry of the equality predicate, without generating steps. The
sole exception is the topmost equality in the conclusion of steps with non-empty context.
The order of the arguments of this equality can never change. As described above, all
rules that accept a non-empty context have a conclusion of the form 𝑡 ≈ 𝑢. Since the
context represents a substitution applied to the left-hand side, this equality symbol is
not symmetric.
The SMT solver veriT currently applies this freedom in a restricted form: equalities

are reordered only when the term below the equality changes during proof search. One
such case is the instantiation of universally quantified variables. If an instantiated
variable appears below an equality, then the equality might have an arbitrary order after
instantiation. Nevertheless, consumers of Alethe must consider the possible implicit
reordering of equalities everywhere.

2.1 The Syntax
The concrete text representation of the Alethe proofs is based on the SMT-LIB standard.
Figure 1 shows an example proof as printed by veriT with light edits for readability. The
format follows the SMT-LIB standard when possible. Input problems in the SMT-LIB
format are scripts. An SMT-LIB script is a list of commands that manipulate the SMT
solver. For example, assert introduces an assertion, check-sat starts solving, and
get-proof instructs the SMT solver to print the proof. Alethe mirrors this structure.
Therefore, beside the SMT-LIB logic and term language, it also uses commands to
structure the proof. An Alethe proof is a list of commands.
Every Alethe proof is associated with an SMT-LIB problem that is proved by the

Alethe proof. This can either be a concrete problem file or, if the incremental solving
commands of SMT-LIB are used, the implicit problem constructed at the invocation
of a get-proof command. In this document, we will call this SMT-LIB problem the
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(assume h1 (not (p a)))
(assume h2 (forall ((z1 U)) (forall ((z2 U)) (p z2))))
...
(anchor :step t9 :args ((vr4 U) (:= z2 vr4)))
(step t9.t1 (cl (= z2 vr4)) :rule refl)
(step t9.t2 (cl (= (p z2) (p vr4)))

:rule cong :premises (t9.t1))
(step t9 (cl (= (forall ((z2 U)) (p z2))

(forall ((vr4 U)) (p vr4))))
:rule bind)

...
(step t14 (cl (forall ((vr5 U)) (p vr5)))

:rule th_resolution :premises (t11 t12 t13))
(step t15 (cl (or (not (forall ((vr5 U)) (p vr5)))

(p a)))
:rule forall_inst :args ((:= vr5 a)))

(step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))
:rule or :premises (t15))

(step t17 (cl) :rule resolution :premises (t16 h1 t14))

Figure 1: Example proof output. Assumptions are introduced; a subproof renames bound
variables; the proof finishes with instantiation and resolution steps.

input problem. An Alethe proof inherits the namespace of its SMT-LIB problem. All
symbols declared or defined in the input problem remain declared or defined, respectively.
Furthermore, the symbolic names introduced by the :named annotation also stay valid
and can be used in the script. For the purpose of the proof rules, terms are treated as if
proxy names introduced by :named annotations have been expanded and annotations have
been removed. For example, the term (or (! (P a) :named baz) (! baz :foo)) and
(or (P a) (P a)) are considered to be syntactically equal. Here :foo is an arbitrary
SMT-LIB annotation.

Figure 2 shows the grammar of the proof text. It is based on the SMT-LIB grammar,
as defined in the SMT-LIB standard [3, Appendix B]. The non-terminals ⟨attribute⟩,
⟨function_def⟩, ⟨sorted_var⟩, ⟨symbol⟩, and ⟨term⟩ are as defined in the standard.
The non-terminal ⟨proof_term⟩ corresponds to the ⟨term⟩ non-terminal of SMT-LIB,
but is extended with the additional production for the choice binder.
Alethe proofs are a list of commands. The assume command introduces a new as-

sumption. While this command could also be expressed using the step command with a
special rule, the special semantics of an assumption justifies the presence of a dedicated
command: assumptions are neither tautological nor derived from premises. The step
command, on the other hand, introduces a derived or tautological clause. Both com-
mands assume and step require an index as the first argument to later refer back to it.
This index is an arbitrary SMT-LIB symbol. It must be unique for each assume and step

8



⟨proof⟩ ≔ ⟨proof_command⟩∗
⟨proof_command⟩ ≔ (assume ⟨symbol⟩ ⟨proof_term⟩ ⟨attribute⟩∗ )

| (step ⟨symbol⟩ ⟨clause⟩ :rule ⟨symbol⟩
⟨premises_annotation⟩?
⟨args_annotation⟩? ⟨attribute⟩∗ )

| (anchor :step ⟨symbol⟩
⟨context_annotation⟩? ⟨attribute⟩∗ )

| (define-fun ⟨function_def⟩ )
⟨clause⟩ ≔ (cl ⟨proof_term⟩∗ )

⟨proof_term⟩ ≔ ⟨term⟩ extended with
(choice ( ⟨sorted_var⟩ ) ⟨proof_term⟩ )

⟨premises_annotation⟩ ≔ :premises ( ⟨symbol⟩+)
⟨args_annotation⟩ ≔ :args ( ⟨step_arg⟩+ )

⟨step_arg⟩ ≔ ⟨symbol⟩ | ( ⟨symbol⟩ ⟨proof_term⟩ )
⟨context_annotation⟩ ≔ :args ( ⟨context_assignment⟩+ )
⟨context_assignment⟩ ≔ ⟨sorted_var⟩

| (:= ⟨symbol⟩ ⟨proof_term⟩ )

Figure 2: The proof grammar.

command. A special restriction applies to the assume commands not within a subproof,
which reference assertions in the input SMT-LIB problem. To simplify proof checking,
the assume command must use the name assigned to the asserted formula if there is any.
For example, if the input problem contains (assert (! (P c) :named foo)), then the
proof must refer to this assertion (if it is needed in the proof) as (assume foo (P c)).
Note that an SMT-LIB problem can assign a name to a term at any point, not only at
its first occurrence. If a term has more than one name, any can be picked.
The second argument of step and assume is the conclusion of the command. For a

step, this term is always a clause. To express disjunctions in SMT-LIB the or operator is
used. This operator, however, needs at least two arguments and cannot represent unary
or empty clauses. To circumvent this, we introduce a new cl operator. It corresponds
to the standard or function extended to one argument, where it is equal to the identity,
and zero arguments, where it is equal to false. Every step must use the cl operator,
even if its conclusion is a unit clause. The anchor and define-fun commands are used
for subproofs and sharing, respectively. The define-fun command corresponds exactly
to the define-fun command of the SMT-LIB language.
Furthermore, the syntax uses annotations as used by SMT-LIB. The original SMT-

LIB syntax uses the non-terminal ⟨attribute⟩. The Alethe syntax uses some predefined
annotation. To simplify parsing, the order in which those must be printed is strict. The
:premises annotation denotes the premises and is skipped if the rule does not require
premises. If the rule carries arguments, the :args annotation is used to denote them.
Anchors have two annotations: :step provides the name of the step that concludes the
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subproof and :args provides the context as sorted variables and assignments. Note that
in this annotation, the ⟨symbol⟩ non-terminal is intended to be a variable. After those
pre-defined annotations, the solver can use additional annotations. This can be used for
debugging, or other purposes. A consumer of Alethe proofs must be able to parse proofs
that contain such annotations.

Subproofs The abstract notation denotes subproofs by marking them with a vertical
line. To map this notation to a list of commands, Alethe uses the anchor command.
This command indicates the start of a subproof. A subproof is concluded by a matching
step command. This step must use a concluding rule (such as subproof, bind, and so
forth).

After the anchor command, the proof uses assume commands to list the assumptions
of the subproof. Subsequently, the subproof is a list of step commands that can use
prior steps in the subproofs as premises. It is not allowed to issue assume commands
after the first step command of a subproof has been issued.

In the abstract notation, every step is associated with a context. The concrete syntax
uses anchors to optimize this. The context is manipulated in a nested way: if a step pops
𝑐1,… , 𝑐𝑛 from a context Γ, there is an earlier step which pushes precisely 𝑐1,… , 𝑐𝑛 onto
the context. Since contexts can only be manipulated by push and pop, context manipu-
lations are nested. The anchor commands push onto the context and the corresponding
step commands pop from the context. To indicate these changes to the context, every
anchor is associated with a list of fixed variables and mappings. The list is provided by
the :args annotation. If the list is empty, the :args annotation is omitted3. Note that,
when an anchor command extends a context Γ with some mappings 𝑥1 ↦ 𝑡1,… , 𝑥𝑛 ↦ 𝑡𝑛,
then the terms 𝑡𝑖 are normalized by applying the substitution subst(Γ) to 𝑡𝑖. This is
because the definition on page 6 extends the context by composing the substitutions.

The :step annotation of the anchor command is used to indicate the step command
that will end the subproof. The clause of this step command is the conclusion of the
subproof. While it is possible to infer the step that concludes a subproof from the
structure of the proof, the explicit annotation simplifies proof checking and makes the
proof easier to read. If the subproof uses a context, the :args annotation of the anchor
command indicates the arguments added to the context for this subproof. The annotation
provides the sort of fixed variables.
In the example proof (Figure 1) a subproof starts at the anchor command. It ends

with the bind steps that finishes the proof for the renaming of the bound variable z2 to
vr4.

A further restriction applies: only the conclusion of a subproof can be used as a premise
outside the subproof. Hence, a proof checking tool can remove the steps of the subproof
from memory after checking it.

Example 4. This example shows the proof from Example 3 expressed as a concrete
proof.
3The only rule that allows an empty list is the subproof rule. Since this rule corresponds to implication
introduction, it does not interact with binders.
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(assume h1 (forall ((x S)) (P x)))
(assume h2 (not (forall ((y S)) (P y))))
(anchor :step t5 :args ((y S) (:= x y)))
(step t3 (cl (= x y)) :rule refl)
(step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))

:rule bind)
(step t6 (cl (not (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))

(not (forall ((x S)) (P x)))
(forall ((y S)) (P y))) :rule equiv_pos2)

(step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))

Unsat mode Assumptions

get-proof

assume,
define-fun,

anchor

Steps

step
step,

define-fun

anchor

Last step

Figure 3: Abstract view of the transitions in an Alethe proof.

Alethe Proof Printing States Figure 2.1 shows the states of an Alethe proof abstractly.
To generate a proof, the SMT solver must be in the Unsat mode, i.e., the solver determined
that the problem is unsatisfiable. The SMT-LIB problem script then requests the proof by
invoking the get-proof command. It is possible that this command fails. For example, if
proof production was not activated up front. If there is no error, the proof is printed and
printing starts with the assumptions. The solver prints the proof as a list of commands
according to the state. The states ensure one constraint is maintained: assumptions can
only appear at either the beginning of a proof or right after a subproof is started by
the anchor command. They cannot be mixed with ordinary proof steps. This simplifies
reconstruction. Each assumption printed at the beginning of the proof corresponds to
assertions in the input problem, up to symmetry of equality. Proof printing concludes
after the last step is printed and the solver returns to the Unsat mode and the user can
issue further commands. Usually the last step is an outermost step (i.e., not within a
subproof) that concludes the proof by deriving the empty clause, but this is not necessary.
The solver is allowed to print some additional, useless, steps after the proof is concluded.

Sharing and Skolem Terms Usually, SMT solvers store terms internally in an efficient
manner. A term data structure with perfect sharing ensures that every term is stored in
memory precisely once. When printing the proof, this compact storage is unfolded. This
leads to a blowup of the proof size.
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Alethe can optionally use sharing4 to print common subterms only once. This is
realized using the standard naming mechanism of SMT-LIB. A term 𝑡 is annotated with
a name 𝑛 by writing (! 𝑡 :named 𝑛 ) where 𝑛 is a symbol. After a term is annotated
with a name, the name can be used in place of the term. This is a purely syntactical
replacement. Alethe continues to use the names already used in the input problem.
Hence, terms that already have a name in the input problem can be replaced by that
name and new names introduced in the proof must not use names already used in the
input problem.
To limit the number of names, an SMT solver can use the following simple approach

used by veriT. Before printing the proof, it iterates over all terms of the proof and
recursively descend into the terms. It marks every unmarked subterm it visits. If a
visited term is already marked, the solver assigns a new name to this term. If a term
already has a name, it does not descend further into the term. By doing so, it ensures
that only terms that appear as child of two different parent terms get a name. Since a
named term is replaced with its name after it first appearance, a term that only appears
as a child of one single term does not need a distinct name. Thanks to the perfect sharing
representation, testing if a term is marked takes constant time and the overall traversal
takes linear time in the proof size.

To simplify reconstruction, Alethe can optionally5 define Skolem constants as functions.
In this case, the proof contains a list of define-fun commands that define shorthand
0-ary functions for the (choice…) terms needed. Without this option, no define-fun
commands are issued, and the constants are expanded.

Implicit Transformations Overall, the following aspects are treated implicitly by Alethe.

• Symmetry of equalities that are not top-most equalities in steps with non-empty
context.

• The order of literals in the clauses.

• The unfolding of names introduced by (! 𝑡 :named 𝑠 ) in the original SMT-LIB
problem or in the proof.

• The removal of other SMT-LIB annotations of the form (! 𝑡… ).

• The unfolding of function symbols introduced by define-fun.6

Alethe proofs contain steps for other aspects that are commonly left implicit, such as
renaming of bound variables, and the application of substitutions.

4For veriT this can be activated by the command-line option --proof-with-sharing.
5For veriT by using the command-line option --proof-define-skolems.
6For veriT this is only used when the user introduces veriT to print Skolem terms as defined functions.
User defined functions in the input problem are not supported by veriT in proof production mode.
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3 Checking Alethe Proofs
In this section we present an abstract procedure to check if an Alethe proof is well-formed
and valid. An Alethe proof is well-formed only if its anchors and steps are balanced.
To check that this is the case, we replace innermost subproofs by holes until there is
no subproof left. If the resulting reduced proof is free of anchors and steps that use
concluding rules, then the overall proof is well-formed. To check if a proof is valid we
have to check if all steps of a subproof adhere to the conditions of their rules before
replacing the subproof by a hole. If all subproofs are valid and all steps in the reduced
proof adhere to the conditions of their rule, then the entire proof is valid.
Formally, an Alethe proof 𝑃 is a list [𝐶1,… ,𝐶𝑛] of steps and anchors. Since every

step uses an unique index, we assume that each step 𝐶𝑖 in 𝑃 uses 𝑖 as its index. The
context only changes at anchors and subproof-concluding steps. Therefore, the elements
of 𝐶1,… ,𝐶𝑛 that are steps are not associated with a context. Instead, the context can
be computed from the prior anchors. The anchors only ever extend the context.

To check an Alethe proof we can iteratively eliminate the first-innermost subproof, i.e.,
the innermost subproof that does not come after a complete subproof. The restriction to
the first subproofs simplifies the calculation of the context of the steps in the subproof.

Definition 4.1 (First-Innermost Subproof). Let 𝑃 be the proof [𝐶1,… ,𝐶𝑛] and 1 ≤
start < end ≤ 𝑛 be two indices such that

• 𝐶start is an anchor,

• 𝐶end is a step that uses a concluding rule,

• no 𝐶𝑘 with 𝑘 < start uses a concluding rule,

• no 𝐶𝑘 with start < 𝑘 < end is an anchor or a step that uses a concluding rule.

Then [𝐶start ,… ,𝐶end ] is the first-innermost subproof of 𝑃.

Example 5. The proof in Example 4 has only one subproof and this subproof is also a
first-innermost subproof. It is the subproof

(anchor :step t5 :args ((:= x y)))
(step t3 (cl (= x y)) :rule refl)
(step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))

:rule bind)

It is easy to calculate the context of the first-innermost subproof.

Definition 5.1 (Calculated Context). Let [𝐶start ,… ,𝐶end ] be the first-innermost sub-
proof of 𝑃. Let 𝐴1,… ,𝐴𝑚 be the anchors among 𝐶1,… ,𝐶start−1.
The calculated context of 𝐶𝑖 is the context

𝑐1,1,… , 𝑐1,𝑛1
,… , 𝑐𝑚,1,… , 𝑐𝑚,𝑛𝑚

where 𝑐𝑘,1,… , 𝑐𝑘,𝑛𝑘
is the list of fixed variables and mappings associated with 𝐴𝑘.

13



Note that if 𝐶𝑖 is an anchor, its calculated context does not contain the elements
associated with 𝐶𝑖. Therefore, the context of 𝐶start is the context of the steps before the
subproof. Furthermore, the step 𝐶end is the concluding step of the subproof and must
have the same context as the steps surrounding the subproof. Hence, the context of 𝐶end
is the calculated context of 𝐶start .

Example 6. The calculated context of the steps t3 and t5 in Example 4 is the context
𝑥 ↦ 𝑦. The calculated context of the concluding step t5 and the anchor is empty.

A first-innermost subproof is valid if all its steps adhere to the conditions of their rule
and only use premises that occur before them in the subproof. The conditions of each
rule are listed in Section 5.

Definition 6.1 (Valid First-Innermost Subproof). Let [𝐶start ,… ,𝐶end ] be the first-
innermost subproof of 𝑃. The subproof is valid if

• all steps 𝐶𝑖 with start < 𝑖 < end only use premises 𝐶𝑗 with start < 𝑗 < 𝑖,

• all 𝐶𝑖 that are steps adhere to the conditions of their rule under the calculated
context of 𝐶𝑖,

• the step 𝐶end adheres to the conditions of its rule under the calculated context of
𝐶start .

The only rule that can discharge assumptions in a subproof is the subproof rule.
Therefore, an admissible subproof can only contain assume step if 𝐶end is the subproof
rule.
To eliminate a subproof we can replace the subproof with a hole that has at its

conclusion the conclusion of the subproof. This is safe as long as the subproof that is
eliminated is valid (see Section 3.2).

Definition 6.2. The function 𝐸 eliminates the first-innermost subproof from a proof if
there is one. Let 𝑃 be a proof [𝐶1,…𝐶𝑛]. Then 𝐸(𝑃) = 𝑃 if 𝑃 has no first-innermost
subproof. Otherwise, 𝑃 has the first-innermost subproof [𝐶start ,… ,𝐶end ], and 𝐸(𝑃) =
[𝐶1,… ,𝐶start−1, 𝐶′, 𝐶end+1,… ,𝐶𝑛] where 𝐶′ is a new step that uses the hole rule and has
the index, conclusion, and premises of 𝐶end .

It is important to add the premises of 𝐶end to 𝐶′. The let rule can use additional
premises and omitting those premises results in an unsound step. We can apply 𝐸
iteratively to a proof 𝑃 until we reach the least fixed point. Since 𝑃 is finite we will
always reach a fixed point in finitely many steps. The result is a list [𝑃0, 𝑃1, 𝑃2,… , 𝑃last ]
where 𝑃0 = 𝑃, 𝑃1 = 𝐸(𝑃), 𝑃2 = 𝐸(𝐸(𝑃)) and 𝑃last = 𝐸(𝑃last).

Example 7. Applying 𝐸 to the proof in Example 4 gives us the proof

(assume h1 (forall ((x S)) (P x)))
(assume h2 (not (forall ((y S)) (P y))))
(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
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:rule hole)
(step t6 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y)))

(not (forall ((x S)) (P x)))
(forall ((y S)) (P y)))) :rule equiv_pos2)

(step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))

Since this proof contains no subproof, it is also 𝑃last .

Definition 7.1 (Well-Formed Proof). The Alethe proof 𝑃 is well-formed if every step
uses a unique index and 𝑃last contains no anchor or step that uses a concluding rule.

Definition 7.2 (Valid Alethe Proof). The proof 𝑃 is a valid Alethe proof if

• 𝑃 is well-formed,

• 𝑃 does not contain any step that uses the hole rule,

• 𝑃last contains a step that has the empty clause as its conclusion,

• the first-innermost subproof of every 𝑃𝑖, 𝑖 < last is valid,

• all steps 𝐶𝑖 in 𝑃last only use premises 𝐶𝑗 in 𝑃last with 1 ≤ 𝑗 < 𝑖,

• all steps 𝐶𝑖 in 𝑃last adhere to the conditions of their rule under the empty context.

The condition that 𝑃 contains no hole ensures that the original proof is complete and
holes are only introduced by eliminating valid subproofs.

Example 8. The proof in Example 4 is valid. The only subproof is valid, the proof
contains no hole, and 𝑃last contains the step t7 that concludes with the empty clause.

It is sometimes useful to speak about the steps that are not within a subproof. We
call such a step an outermost step. In a well-formed proof those are the steps of 𝑃last .

3.1 Contexts and Metaterms
We now direct our attention to subproofs with contexts. It is useful to give precise
semantics to contexts to have the tools to check that rules that use contexts are sound.
Contexts are local in the sense that they affect only the proof step they are applied
to. For the full details on contexts see [2]. The presentation here is adapted from this
publication, but omits some details.

To handle subproofs with contexts, we translate the contexts into λ-terms. This allows
us to leverage the λ-calculus as an existing well-understood theory of binders. These
λ-terms are called metaterms.

Definition 8.1 (Metaterm). Metaterms are expressions constructed by the grammar

𝑀 ∶∶= t ∣ 𝜆𝑥.𝑀 ∣ (𝜆 ̄𝑥𝑛.𝑀) ̄𝑡𝑛

where 𝑡 is an ordinary term and 𝑡𝑖 and 𝑥𝑖 have matching sorts for all 0 ≤ 𝑖 ≤ 1.
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According to this definition, a metaterm is either a boxed term, a λ-abstraction, or an
application to an uncurried λ-term. The annotation t delimits terms from the context,
a simple λ-abstraction is used to express fixed variables, and the application expresses
simulations substitution of 𝑛 terms.7
We use =𝛼𝛽 to denote syntactic equivalence modulo α-equivalence and β-reduction.
Proof steps with contexts can be encoded into proof steps with empty contexts, but

with metaterms. A proof step

i. Γ ⊳ 𝑡 ≈ 𝑢 (rule ̄𝑝𝑛) [ ̄𝑎𝑚]

is encoded into

i. ⊳ 𝐿(Γ)[𝑡] ≈ 𝑅(Γ)[𝑢] (rule ̄𝑝𝑛) [ ̄𝑎𝑚]

where

𝐿(∅)[𝑡] = 𝑡 𝑅(∅)[𝑢] = 𝑢
𝐿(𝑥, ̄𝑐𝑚)[𝑡] = 𝜆𝑥. 𝐿( ̄𝑐𝑚)[𝑡] 𝑅(𝑥, ̄𝑐𝑚)[𝑢] = 𝜆𝑥.𝑅( ̄𝑐𝑚)[𝑢]

𝐿( ̄𝑥𝑛 ↦ ̄𝑠𝑛, ̄𝑐𝑚)[𝑡] = (𝜆 ̄𝑥𝑛. 𝐿( ̄𝑐𝑚)[𝑡]) ̄𝑠𝑛 𝑅( ̄𝑥𝑛 ↦ ̄𝑠𝑛, ̄𝑐𝑚)[𝑢] = 𝑅( ̄𝑐𝑚)[𝑢]

To achieve the same effect as using the subst() function described above, we can
translate the terms into metaterms, perform β-reduction, and rename bound variables if
necessary [2, Lemma 11].

Example 9. The example on page 6 becomes

𝐿(𝑥 ↦ 7, 𝑥 ↦ 𝑔(𝑥))[𝑥] = (𝜆𝑥. (𝜆𝑥. 𝑥 ) (𝑔(𝑥))) 7 =𝛼𝛽 𝑔(7)

𝐿(𝑥 ↦ 7, 𝑥, 𝑥 ↦ 𝑔(𝑥))[𝑥] = (𝜆𝑥. 𝜆𝑥. (𝜆𝑥. 𝑥 ) (𝑔(𝑥))) 7 =𝛼𝛽 𝜆𝑥. 𝑔(𝑥)

Most proof rules that operate with contexts can easily be translated into proof rules
using metaterms. The exception are the tautologous rules, such as refl and the ⋯_simplify
rules.

Steps that use such rules always encode a judgment ⊨ Γ ⊳ 𝑡 ≈ 𝑢. With the encoding
described above we get 𝐿(Γ)[𝑡] ≈ 𝑅(Γ)[𝑢] =𝛼𝛽 𝜆 ̄𝑥𝑛. 𝑡′ ≈ 𝜆 ̄𝑥𝑛. 𝑢′ with some terms 𝑡′,
𝑢′. To handle those terms, we use the reify() function. This function is defined as

reify(𝜆 ̄𝑥𝑛. 𝑡 ≈ 𝜆 ̄𝑥𝑛. 𝑢 ) = ∀ ̄𝑥𝑛. (𝑡 ≈ 𝑢).

Therefore, all tautological rules with contexts represent a judgment
⊨ reify(𝑇 ≈ 𝑈) where 𝑇 =𝛼𝛽 𝐿(Γ)[𝑡] and 𝑈 =𝛼𝛽 𝑅(Γ)[𝑢].

7The box annotation used here is unrelated to the boxes within the SMT solver discussed in the introduction.
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Example 10. Consider the step

i. 𝑦, 𝑥 ↦ 𝑦 ⊳ 𝑥 + 0 ≈ 𝑦 sum_simplify

Translating the context into metaterms leads to

i. ⊳ (𝜆𝑦. (𝜆𝑥. x + 0 ) 𝑦) ≈ (𝜆𝑦. y ) sum_simplify

Applying β-reduction leads to

i. ⊳ (𝜆𝑦. y + 0 ) ≈ (𝜆𝑦. y ) sum_simplify

Finally, using reify() leads to

i. ⊳ ∀𝑦. (𝑦 + 0 ≈ 𝑦) sum_simplify

This obviously holds in the theory of linear arithmetic.

3.2 Soundness
Any proof calculus should be sound. In the case of Alethe, most proof rules are standard
rules, or simple tautologies. The rules that use context are unusual, but those proof rules
were previously shown to be sound [2]. Alethe does not use any rules that are merely
satisfiability preserving. The skolemization rules replace the bound variables with choice
terms instead of fresh symbols.8 All Alethe rules express semantic implications. Overall,
we assume in this document that the proof rules and proofs written in the abstract
notation are sound.
Nevertheless, a modest gap remains. The concrete, command-based syntax does

not precisely correspond to the abstract notation. In this section we will address the
soundness of concrete Alethe proofs.

Theorem 10.1 (Soundness of Concrete Alethe Proofs). If there is a valid Alethe proof
𝑃 = [𝐶1,… ,𝐶𝑛] that has the formulas 𝜑1,… , 𝜑𝑚 as the conclusions of the outermost
assume steps, then

𝜑1,… , 𝜑𝑚 ⊨ ⊥.

Here, ⊨ represents semantic consequence in the many-sorted first order logic of SMT-
LIB with the theories of uninterpreted functions and linear arithmetic extended with the
choice operator and clauses.
To show the soundness of a valid Alethe proof 𝑃 = [𝐶1,… ,𝐶𝑛], we can use the same

approach as for the definition of validity: consider first-innermost subproof first and then
replace them by holes. Since valid proofs do not contain holes, we have to generalize the
induction to allow holes that were introduced by the elimination of subproofs. We start
with simple subproofs with empty contexts and without nested subproofs.
8The define-fun function can introduce fresh symbols, but we will assume here that those commands
have been eliminated by unfolding the definition.

17



Lemma 10.1. Let 𝑃 be a proof that contains a valid first-innermost subproof where
𝐶end is a subproof step. Let 𝜓 be the conclusion of 𝐶end . Then ⊨ 𝜓 holds.

Proof. First, we use induction on the number of steps 𝑛 after 𝐶start . Let 𝜓𝑛 be the
conclusion of 𝐶start+𝑛 and 𝑉𝑛 the conclusions of the assume steps in [𝐶start ,… ,𝐶start+𝑛].
Assumptions always introduce unit clauses. We will identify unit clauses with their single
literal. We will show 𝑉𝑛 ⊨ 𝜓𝑛 if start + 𝑛 < end.

If 𝑛 = 1, then 𝐶start+𝑛 = 𝐶start+1 must either be a tautology, or an assume step. In the
first case, ⊨ 𝜓start+1 holds, and in the second case 𝜓start+1 ⊨ 𝜓start+1 holds.

For subsequent 𝑛, 𝐶start+𝑛 is either an ordinary step, or an assume step. In the second
case, 𝜓start+𝑛 ⊨ 𝜓start+𝑛 which can be weakened to 𝑉𝑛 ⊨ 𝜓start+𝑛. In the first case, the
step 𝐶start+𝑛 has a set of premises 𝑆. For each step 𝐶start+𝑖 ∈ 𝑆 we have 𝑖 < 𝑛 and
𝑉𝑖 ⊨ 𝜓start+𝑖 due to the induction hypothesis. Since 𝑖 < 𝑛, the premises 𝑉𝑖 are a subset
of 𝑉𝑛 and we can weaken 𝑉𝑖 ⊨ 𝜓start+𝑖 to 𝑉𝑛 ⊨ 𝜓start+𝑖. Since all premises of 𝐶start+𝑛 are
the consequence of 𝑉𝑛 we get 𝑉𝑛 ⊨ 𝜓𝑛.
The step 𝐶end−1 is the last step of the subproof that does not use a concluding

rule. At this step we have 𝑉end−1 ⊨ 𝜓end−1. Since 𝐶end is not an assume step, the
set 𝑉end−1 = {𝜑1,… , 𝜑𝑚} contains all assumptions in the subproof. By the deduction
theorem we get

⊨ 𝜑1 ∧ ⋯ ∧ 𝜑𝑚 → 𝜓end−1.

This can be transformed into the clause

⊨ ¬𝜑1, ⋯ , ¬𝜑𝑚, 𝑙1,… , 𝑙𝑜.

where 𝑙1,… , 𝑙𝑜 are the literals of 𝜓end−1. This clause is exactly the conclusion of the step
𝐶end according to the definition of the subproof rule.

We can do the same reasoning as for Lemma 10.1 for subproofs with contexts. This is
slightly complicated by the let rule that can use extra premises.

Lemma 10.2. Let 𝑃 be a proof that contains a valid first-innermost subproof where
𝐶end is a step using one of: bind, sko_ex, sko_forall, onepoint, let.
Then 𝑉 ⊨ Γ ⊳ 𝜓 where Γ is the calculated context of 𝐶start and 𝜓 is the conclusion

of 𝐶end . The set 𝑉 is empty if 𝐶end does not use the let rule. Otherwise, it contains all
conclusions of the assume steps among [𝐶𝛿,… ,𝐶start ] where 𝛿 is either the largest index
𝛿 < start such that 𝑠𝛿 is an anchor, or 1 if no such index exist. Hence, there is no anchor
between 𝐶𝛿 and 𝐶start .

Proof. The step 𝐶start is an anchor due to the definition of innermost-first subproof. Let
𝑐1,… , 𝑐𝑛 be the context introduced by the anchor 𝐶start , and let Γ be the calculated
context of 𝐶start . Γ′ = Γ, 𝑐1,… , 𝑐𝑛. is the calculated context of the steps in the subproof
after 𝐶start .
The step 𝐶end is a step

⋯
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end − 1. Γ′ ⊳ 𝜓′ (… )
end. Γ ⊳ 𝜓 (rule 𝑖1,… , 𝑖𝑛)

Since we assume the step 𝐶end is correctly employed, ⊨ Γ ⊳ 𝜓 holds, as long as
⊨ Γ′ ⊳ 𝜓′ holds.
We perform the same induction as for Lemma 10.1 over the steps in [𝐶start ,… ,𝐶end ].

Since 𝐶end does not use the subproof rule, the subproof does not contain any assumptions
and 𝑉𝑖 stays empty. Again, we are interested in the step 𝐶end−1. At this step we get
⊨ Γ′ ⊳ 𝜓′.
Only the let rule uses additional premises 𝐶𝑖1 ,… ,𝐶𝑖𝑛 . Hence, for all other rules, the

conclusion cannot depend on any step outside the subproof and 𝑉 is empty. Due to the
definition of first-innermost subproof, all steps 𝐶𝑖1 ,… ,𝐶𝑖𝑛 are in the same subproof that
starts at 𝐶𝛿.
The steps 𝐶𝑖1 ,… ,𝐶𝑖𝑛 might depend on some assume steps that appear before them in

their subproof. This is the case if the steps are outermost steps, or if the subproof that
starts at 𝐶𝛿 concludes with a subproof step. In this case we can, as we saw in the proof
of Lemma 10.1, weaken their judgments to include all assumptions in [𝐶𝛿,… ,𝐶start ].
If the subproof that starts at 𝐶𝛿 concludes with any other rule, then there cannot be

any assumptions and 𝑉 is empty.

By using Lemma 10.1 and Lemma 10.2 we can now show that a valid, concrete Alethe
proof is sound. That is, we can show Theorem 10.1.

Proof. Since 𝑃 = [𝐶1,… ,𝐶𝑛] is valid, all steps that do not use the hole rule adhere to
their rule. Since we assume that the abstract notation and the rules are sound, we only
have to worry about the steps using the hole rule. Those should be sound, i.e., for a hole
step with the conclusion 𝜓, premises 𝑉, and context Γ the judgment 𝑉 ⊨ Γ ⊳ 𝜓 must
hold.

Since 𝑃 is a valid proof there is a sequence [𝑃0,… , 𝑃last ] as discussed in Section 3. For
𝑖 < last, 𝐸(𝑃𝑖) = 𝑃𝑖+1 replaces the first-innermost subproof in 𝑃𝑖 by a hole with the
conclusion 𝜓. Furthermore, the context of the introduced hole corresponds to the context
Γ of the start of the subproof. Since 𝑃 is a valid proof, the first-innermost subproof
eliminated by 𝐸 is always valid. Therefore, we can apply Lemma 10.1 or Lemma 10.2 to
conclude that the hole introduced by 𝐸 is sound.
Since 𝑃0 does not contain any holes, the holes in each proof 𝑃𝑖 are all introduced

by innermost-first subproof elimination. Therefore, they are sound. In consequence,
all holes in 𝑃last are sound and we can perform the same argument as in the proof of
Lemma 10.1 to the proof 𝑃last .
Let 𝑗 be the index of the step in 𝑃last that concludes with the empty clause. Let

start = 1 and end = 𝑗 in the argument of Lemma 10.1. This shows that 𝑉 ⊨ ⊥,
where 𝑉 is the conclusion of the assume steps in the sublist [𝐶1,… ,𝐶𝑗] of 𝑃last . We can
weaken this by adding the conclusions of the assume steps in [𝐶𝑗,… ,𝐶𝑛] of 𝑃last to get
𝜑1,… , 𝜑𝑚 ⊨ ⊥.
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4 Core Concepts of the Alethe Rules
Together with the language, the Alethe format also includes a set of proof rule. Section 5
gives a full list of all proof rules. Currently, the proof rules correspond to the rules
that the solver veriT can emit. For the rest of this section, we will discuss some general
concepts related to the rules.

Tautologous Rules and Simple Deduction Most rules introduce tautologies. One example
is the and_pos rule: ¬(𝜑1 ∧ 𝜑2 ∧ … ∧ 𝜑𝑛), 𝜑𝑖. Other rules derive their conclusion from
a single premise. Those rules are primarily used to simplify Boolean connectives during
preprocessing. For example, the implies rule eliminates an implication: From 𝜑1 → 𝜑2,
it deduces ¬𝜑1, 𝜑2.

Resolution. CDCL(T)-based SMT solvers, and especially their SAT solvers, are fun-
damentally based on resolution of clauses. Hence, Alethe also has dedicated clauses
and a resolution proof rule. However, since SMT solvers do not enforce a strict clausal
normal form, ordinary disjunction is also used. Keeping clauses and disjunctions distinct
simplifies rule checking. For example, in the case of resolution there is a clear distinc-
tion between unit clauses where the sole literal starts with a disjunction and non-unit
clauses. The syntax for clauses uses the cl operator, while disjunctions use the standard
SMT-LIB or operator. The or rule is responsible for converting disjunctions into clauses.
The Alethe proofs use a generalized propositional resolution rule with the name res-

olution or th_resolution. Both names denote the same rule. The difference only serves
to distinguish if the rule was introduced by the SAT solver or by a theory solver. The
resolution step is purely propositional; there is no notion of a unifier. The resolution
rules also implicitly simplifies repeated negations at the head of literals.
The premises of a resolution step are clauses, and the conclusion is a clause that has

been derived from the premises by some binary resolution steps.

Quantifier Instantiation To express quantifier instantiation, the rule forall_inst is used.
It produces a formula of the form (¬∀ ̄𝑥𝑛. 𝜑) ∨ 𝜑[ ̄𝑡𝑛], where 𝜑 is a term containing the
free variables ̄𝑥𝑛, and for each 𝑖 the ground term 𝑡𝑖 is a new term with the same sort as
𝑥𝑖.9

The arguments of a forall_inst step are the list (𝑥1, 𝑡1),… , (𝑥𝑛, 𝑡𝑛). While this informa-
tion can be recovered from the term, providing it explicitly helps reconstruction because
the implicit reordering of equalities obscures which terms have been used as instances.
Existential quantifiers are handled by skolemization.

Linear Arithmetic Proofs for linear arithmetic use a number of straightforward rules,
such as la_totality (𝑡1 ≤ 𝑡2 ∨ 𝑡2 ≤ 𝑡1)10 and the main rule la_generic. The conclusion of

9For historical reasons, forall_inst has a unit clause with a disjunction as its conclusion and not the clause
(¬∀�̄�𝑛. 𝜑),𝜑[ ̄𝑡𝑛].

10This rule also has a unit clause with a disjunction as its conclusion.
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an la_generic step is a tautology ¬𝜑1, ¬𝜑2,… , ¬𝜑𝑛 where the 𝜑𝑖 are linear (in)equalities.
Checking the validity of this clause amounts to checking the unsatisfiability of the
system of linear equations 𝜑1, 𝜑2,… , 𝜑𝑛. The annotation of an la_generic step contains
a coefficient for each (in)equality. The result of forming the linear combination of the
literals with the coefficients is a trivial inequality between constants.

Example 11. The following example is the proof for the unsatisfiability of (𝑥+𝑦 < 1)∨
(3 < 𝑥), 𝑥 ≈ 2, and 0 ≈ 𝑦.

1. ⊳ (3 < 𝑥) ∨ (𝑥 + 𝑦 < 1) assume
2. ⊳ 𝑥 ≈ 2 assume
3. ⊳ 0 ≈ 𝑦 assume
4. ⊳ (3 < 𝑥), (𝑥 + 𝑦 < 1) (or 1)
5. ⊳ ¬(3 < 𝑥), ¬(𝑥 ≈ 2) la_generic [1.0, 1.0]
6. ⊳ ¬(3 < 𝑥) (resolution 2, 5)
7. ⊳ 𝑥 + 𝑦 < 1 (resolution 4, 6)
8. ⊳ ¬(𝑥 + 𝑦 < 1), ¬(𝑥 ≈ 2) ∨ ¬(0 ≈ 𝑦) la_generic [1.0,−1.0, 1.0]
9. ⊳ ⊥ (resolution 8, 7, 2, 3)

Skolemization and Other Preprocessing Steps One typical example for a rule with con-
text is the sko_ex rule that is used to express skolemization of an existentially quantified
variable. The conclusion of a step that uses this rules is an equality. The left-hand side is
a formula starting with an existential quantifier over some variable 𝑥. In the formula on
the right-hand side, the variable is replaced by the appropriate Skolem term. To provide
a proof for the replacement, the sko_ex step uses one premise. The premise has a context
that maps the existentially quantified variable to the appropriate Skolem term.

i. Γ, 𝑥 ↦ (𝜀𝑥. 𝜑) ⊳ 𝜑 ≈ 𝜓 (… )
j. Γ ⊳ (∃𝑥. 𝜑) ≈ 𝜓 (sko_ex)

Example 12. To illustrate how such a rule is applied, consider the following example
taken from [2]. Here the term ¬𝑝(𝜀𝑥.¬𝑝(𝑥)) is skolemized. The refl rule expresses a
simple tautology on the equality (reflexivity in this case), cong is functional congruence,
and sko_forall works like sko_ex, except that the choice term is 𝜀𝑥.¬𝜑.

1. 𝑥 ↦ (𝜀𝑥. ¬(𝑝 𝑥)) ⊳ 𝑥 ≈ 𝜀𝑥. ¬(𝑝 𝑥) refl
2. 𝑥 ↦ (𝜀𝑥. ¬(𝑝 𝑥)) ⊳ (𝑝 𝑥) ≈ 𝑝(𝜀𝑥. ¬(𝑝 𝑥)) (cong 1)
3. ⊳ (∀𝑥. (𝑝 𝑥)) ≈ (𝑝 (𝜀𝑥. ¬(𝑝 𝑥))) (sko_forall 2)
4. ⊳ (¬∀𝑥. (𝑝 𝑥)) ≈ ¬(𝑝 (𝜀𝑥. ¬(𝑝 𝑥))) (cong 3)

4.1 Bitvector Reasoning with Bitblasting
A standard approach to handle bitvector reasoning in SMT solvers is bitblasting. Bit-
blasting works by translating bitvector functions to propositional formulas that model
the logical circuit of the bitvector function.
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To express bitblasting in Alethe proof rules, the the Alethe calculus uses multiple
families of helper functions: bbT, bitOf𝑚, bvsize, and bv𝑖

𝑛. Functions in the families
are distinguished either by overloading (bbT and bvsize) or by explicit indexing (bitOf𝑚
and bv𝑖

𝑛). To avoid name clashes with user defined functions, bbT is written as @bbT,
bitOf as @bitOf, bvsize as @bvsize, and bv as @bv. The SMT-LIB standard specifies
that simple symbols starting with “@” are reserved for solver generated functions.
The family bbT consists of one function for each bitvector sort (BitVec 𝑛).

bbT ∶ Bool … Bool⏟⏟⏟⏟⏟⏟⏟
𝑛

(BitVec 𝑛).

Intuitively, the function bbT takes a list of boolean arguments and packs them into a
bitvector. Let ⟨𝑢1,… , 𝑢𝑛⟩ denote a bitvector of sort (BitVec 𝑛) where 𝑢𝑖 = ⊤ if the bit
at position 𝑖 is 1, and 𝑢𝑖 = ⊥ otherwise. The bit 𝑢𝑛 is the least significant bit. Then

bbT 𝑣1 …𝑣𝑛 = ⟨𝑣1,… , 𝑣𝑛⟩.

The bbT functions could be defined in terms of standard SMT-LIB functions.

bbT 𝑣1 …𝑣𝑛 ∶= concat (concat (…
(concat (ite 𝑣1 ⟨⊤⟩ ⟨⊥⟩) (ite 𝑣2 ⟨⊤⟩ ⟨⊥⟩))
…
(ite 𝑣𝑛−1 ⟨⊤⟩ ⟨⊥⟩))
(ite 𝑣𝑛 ⟨⊤⟩ ⟨⊥⟩))

The functions bitOf𝑚 are the inverse of bbT. They extract a bit of a bitvector as a
boolean. Just as the built in extract symbol, bitOf𝑚 is used as an indexed symbol.
Hence, for 𝑚 ≤ 𝑛, we write (_ @bitOf 𝑚 ), to denote functions

bitOf𝑚 ∶ (BitVec 𝑛) → Bool.

These functions are defined as

bitOf𝑚⟨𝑢1,… , 𝑢𝑛⟩ ∶= 𝑢𝑚.

The functions bvsize return the size of a bitvector. Formally, there is one bvsize for
for each bitvector sort (BitVec 𝑛). Each bvsize is a constant function that returns 𝑛.
Using notation:

bvsize ∶ (BitVec 𝑛) → ℕ
bvsize 𝑏 ∶= 𝑛

Finally, bv𝑖
𝑛 is a family of constants indexed by two parameters: a bitvector length 𝑛,

and a natural number 𝑖. We write (_ @bv𝑛 𝑖 ) for bv𝑖
𝑛. The space before 𝑛 is omitted
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for historical reasons. Each bv𝑖
𝑛 is the bitvector constant that represents the bitvector

of length 𝑛 that encodes the integer 𝑖. Formally, it corresponds to nat2bv[n](i), where
nat2bv is defined as in the SMT-LIB standard.11

5 The Alethe Rules
This section provides a list of all proof rules supported by Alethe. To make this long list
more accessible, the section first lists multiple classes of proof rules. The classes are not
mutually exclusive: for example, the la_generic rule is both a linear arithmetic rule and
introduces a tautology. The number in brackets is the position of the rule in the overall
list of proof rules. Table 1 lists rules that serve a special purpose. Table 3 lists all rules
that introduce tautologies. That is, regular rules that do not use premises.
The subsequent section, starting at 5.2, defines all rules and provides example proofs

for complicated rules. The index of proof rules on page 46 can be used to quickly find
the definition of rules.

5.1 Classifications of the Rules

Table 1: Special rules.
Rule Description
assume (1) Introduction of an assumption.
hole (2) Placeholder for rules not defined here.
subproof (10) Concludes a subproof and discharges local assumptions.

Table 2: Resolution and related rules.
Rule Description
resolution (7) Chain resolution of two or more clauses.
th_resolution (6) As resolution, but used by theory solvers.
tautology (8) Simplification of tautological clauses to ⊤.
contraction (9) Removal of duplicated literals.

Table 3: Rules introducing tautologies.
Rule Description
true (3) ⊤
false (4) ¬⊥
not_not (5) ¬(¬¬𝜑), 𝜑
la_generic (11) Tautologous disjunction of linear inequalities.
lia_generic (12) Tautologous disjunction of linear integer inequalities.

11See https://smt-lib.github.io/theories-FixedSizeBitVectors.shtml.
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la_disequality (13) 𝑡1 ≈ 𝑡2 ∨ ¬(𝑡1 ≤ 𝑡2) ∨ ¬(𝑡2 ≤ 𝑡1)
la_totality (14) 𝑡1 ≤ 𝑡2 ∨ 𝑡2 ≤ 𝑡1
la_tautology (15) A trivial linear tautology.
forall_inst (19) Quantifier instantiation.
refl (20) Reflexivity after applying the context.
eq_reflexive (23) 𝑡 ≈ 𝑡 without context.
eq_transitive (24) ¬(𝑡1 ≈ 𝑡2),… , ¬(𝑡𝑛−1 ≈ 𝑡𝑛), 𝑡1 ≈ 𝑡𝑛
eq_congruent (25) ¬(𝑡1 ≈ 𝑢1),… , ¬(𝑡𝑛 ≈ 𝑢𝑛), 𝑓(𝑡1,… , 𝑡𝑛) ≈ 𝑓(𝑢1,… , 𝑢𝑛)
eq_congruent_pred (26) ¬(𝑡1 ≈ 𝑢1),… , ¬(𝑡𝑛 ≈ 𝑢𝑛), 𝑃 (𝑡1,… , 𝑡𝑛) ≈ 𝑃(𝑢1,… , 𝑢𝑛)
qnt_cnf (27) Clausification of a quantified formula.
and_pos (43) ¬(𝜑1 ∧… ∧ 𝜑𝑛), 𝜑𝑘
and_neg (44) (𝜑1 ∧… ∧ 𝜑𝑛), ¬𝜑1,… , ¬𝜑𝑛
or_pos (45) ¬(𝜑1 ∨… ∨ 𝜑𝑛), 𝜑1,… , 𝜑𝑛
or_neg (46) (𝜑1 ∨… ∨ 𝜑𝑛), ¬𝜑𝑘; with 1 ≤ 𝑘 ≤ 𝑛
xor_pos1 (47) ¬(𝜑1 xor𝜑2), 𝜑1, 𝜑2
xor_pos2 (48) ¬(𝜑1 xor𝜑2), ¬𝜑1, ¬𝜑2
xor_neg1 (49) 𝜑1 xor𝜑2, 𝜑1, ¬𝜑2
xor_neg2 (50) 𝜑1 xor𝜑2, ¬𝜑1, 𝜑2
implies_pos (51) ¬(𝜑1 → 𝜑2), ¬𝜑1, 𝜑2
implies_neg1 (52) 𝜑1 → 𝜑2, 𝜑1
implies_neg2 (53) 𝜑1 → 𝜑2, ¬𝜑2
equiv_pos1 (54) ¬(𝜑1 ≈ 𝜑2), 𝜑1, ¬𝜑2
equiv_pos2 (55) ¬(𝜑1 ≈ 𝜑2), ¬𝜑1, 𝜑2
equiv_neg1 (56) 𝜑1 ≈ 𝜑2, ¬𝜑1, ¬𝜑2
equiv_neg2 (57) 𝜑1 ≈ 𝜑2, 𝜑1, 𝜑2
ite_pos1 (60) ¬(ite 𝜑1 𝜑2 𝜑3), 𝜑1, 𝜑3
ite_pos2 (61) ¬(ite 𝜑1 𝜑2 𝜑3), ¬𝜑1, 𝜑2
ite_neg1 (62) (ite 𝜑1 𝜑2 𝜑3), 𝜑1, ¬𝜑3
ite_neg2 (63) (ite 𝜑1 𝜑2 𝜑3), ¬𝜑1, ¬𝜑2
connective_def (66) Definition of some connectives.
and_simplify (67) Simplification of a conjunction.
or_simplify (68) Simplification of a disjunction.
not_simplify (69) Simplification of a Boolean negation.
implies_simplify (70) Simplification of an implication.
equiv_simplify (71) Simplification of an equivalence.
bool_simplify (72) Simplification of combined Boolean connectives.
ac_simp (73) Flattening and removal of duplicates for ∨ or ∧.
ite_simplify (74) Simplification of if-then-else.
qnt_simplify (75) Simplification of constant quantified formulas.
qnt_join (77) Joining of consecutive quantifiers.
qnt_rm_unused (78) Removal of unused quantified variables.
eq_simplify (79) Simplification of equality.
div_simplify (80) Simplification of division.
prod_simplify (81) Simplification of products.
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unary_minus_simplify (82) Simplification of the unary minus.
minus_simplify (83) Simplification of subtractions.
sum_simplify (84) Simplification of sums.
comp_simplify (85) Simplification of arithmetic comparisons.
distinct_elim (87) Elimination of the distinct operator.
la_rw_eq (88) (𝑡 ≈ 𝑢) ≈ (𝑡 ≤ 𝑢 ∧ 𝑢 ≤ 𝑡)
nary_elim (89) Eliminate 𝑛-ary application of operators via binary appli-

cations.

Table 4: Linear arithmetic rules.
Rule Description
la_generic (11) Tautologous disjunction of linear inequalities.
lia_generic (12) Tautologous disjunction of linear integer inequalities.
la_disequality (13) 𝑡1 ≈ 𝑡2 ∨ ¬(𝑡1 ≤ 𝑡2) ∨ ¬(𝑡2 ≤ 𝑡1)
la_totality (14) 𝑡1 ≤ 𝑡2 ∨ 𝑡2 ≤ 𝑡1
la_tautology (15) A trivial linear tautology.
la_rw_eq (88) (𝑡 ≈ 𝑢) ≈ (𝑡 ≤ 𝑢 ∧ 𝑢 ≤ 𝑡)
div_simplify (80) Simplification of division.
prod_simplify (81) Simplification of products.
unary_minus_simplify (82) Simplification of the unary minus.
minus_simplify (83) Simplification of subtractions.
sum_simplify (84) Simplification of sums.
comp_simplify (85) Simplification of arithmetic comparisons.

Table 5: Quantifier handling.
Rule Description
forall_inst (19) Instantiation of a universal quantifier.
bind (16) Renaming of bound variables.
sko_ex (17) Skolemization of an existential quantifier.
sko_forall (18) Skolemization of an universal quantifier.
qnt_cnf (27) Clausification of quantified formulas.
qnt_simplify (75) Simplification of constant quantified formulas.
onepoint (76) The one-point rule.
qnt_join (77) Joining of consecutive quantifiers.
qnt_rm_unused (78) Removal of unused quantified variables.

Table 6: Skolemization rules.
Rule Description
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sko_ex (17) Skolemization of existential variables.
sko_forall (18) Skolemization of universal variables.

Table 7: Clausification rules. These rules can be used to perform propositional clausifi-
cation.

Rule Description
and (28) And elimination.
not_or (29) Elimination of a negated disjunction.
or (30) Disjunction to clause.
not_and (31) Distribution of negation over a conjunction.
xor1 (32) From (xor𝜑1 𝜑2) to 𝜑1, 𝜑2.
xor2 (33) From (xor𝜑1 𝜑2) to ¬𝜑1, ¬𝜑2.
not_xor1 (34) From ¬(xor𝜑1 𝜑2) to 𝜑1, ¬𝜑2.
not_xor2 (35) From ¬(xor𝜑1 𝜑2) to ¬𝜑1, 𝜑2.
implies (36) From 𝜑1 → 𝜑2 to ¬𝜑1, 𝜑2.
not_implies1 (37) From ¬(𝜑1 → 𝜑2) to 𝜑1.
not_implies2 (38) From ¬(𝜑1 → 𝜑2) to ¬𝜑2.
equiv1 (39) From 𝜑1 ≈ 𝜑2 to ¬𝜑1, 𝜑2.
equiv2 (40) From 𝜑1 ≈ 𝜑2 to 𝜑1, ¬𝜑2.
not_equiv1 (41) From ¬(𝜑1 ≈ 𝜑2) to 𝜑1, 𝜑2.
not_equiv2 (42) From ¬(𝜑1 ≈ 𝜑2) to ¬𝜑1, ¬𝜑2.
and_pos (43) ¬(𝜑1 ∧… ∧ 𝜑𝑛), 𝜑𝑘
and_neg (44) (𝜑1 ∧… ∧ 𝜑𝑛), ¬𝜑1,… , ¬𝜑𝑛
or_pos (45) ¬(𝜑1 ∨… ∨ 𝜑𝑛), 𝜑1,… , 𝜑𝑛
or_neg (46) (𝜑1 ∨… ∨ 𝜑𝑛), ¬𝜑𝑘
xor_pos1 (47) ¬(𝜑1 xor𝜑2), 𝜑1, 𝜑2
xor_pos2 (48) ¬(𝜑1 xor𝜑2), ¬𝜑1, ¬𝜑2
xor_neg1 (49) 𝜑1 xor𝜑2, 𝜑1, ¬𝜑2
xor_neg2 (50) 𝜑1 xor𝜑2, ¬𝜑1, 𝜑2
implies_pos (51) ¬(𝜑1 → 𝜑2), ¬𝜑1, 𝜑2
implies_neg1 (52) 𝜑1 → 𝜑2, 𝜑1
implies_neg2 (53) 𝜑1 → 𝜑2, ¬𝜑2
equiv_pos1 (54) ¬(𝜑1 ≈ 𝜑2), 𝜑1, ¬𝜑2
equiv_pos2 (55) ¬(𝜑1 ≈ 𝜑2), ¬𝜑1, 𝜑2
equiv_neg1 (56) 𝜑1 ≈ 𝜑2, ¬𝜑1, ¬𝜑2
equiv_neg2 (57) 𝜑1 ≈ 𝜑2, 𝜑1, 𝜑2
let (86) Elimination of the let operator.
distinct_elim (87) Elimination of the distinct operator.
nary_elim (89) Elimination of n-ary application of operators.
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Table 8: Simplification rules. These rules represent typical operator-level simplifications.
Rule Description
connective_def (66) Definition of the Boolean connectives.
and_simplify (67) Simplification of a conjunction.
or_simplify (68) Simplification of a disjunction.
not_simplify (69) Simplification of a Boolean negation.
implies_simplify (70) Simplification of an implication.
equiv_simplify (71) Simplification of an equivalence.
bool_simplify (72) Simplification of combined Boolean connectives.
ac_simp (73) Flattening and removal of duplicates for ∨ or ∧.
ite_simplify (74) Simplification of if-then-else.
qnt_simplify (75) Simplification of constant quantified formulas.
onepoint (76) The one-point rule.
qnt_join (77) Joining of consecutive quantifiers.
qnt_rm_unused (78) Removal of unused quantified variables.
eq_simplify (79) Simplification of equalities.
div_simplify (80) Simplification of division.
prod_simplify (81) Simplification of products.
unary_minus_simplify (82) Simplification of the unary minus.
minus_simplify (83) Simplification of subtractions.
sum_simplify (84) Simplification of sums.
comp_simplify (85) Simplification of arithmetic comparisons.
qnt_simplify (75) Simplification of constant quantified formulas.

Table 9: Bitvector rules.
Rule Description
bitblast_extract (92) Bitblasting of extract.
bitblast_ult (93) Bitblasting of ult.
bitblast_add (94) Bitblasting of add.

5.2 Rule List
Rule 1: assume
𝑖. ⊳ 𝜑 assume
where 𝜑 corresponds up to the orientation of equalities to a formula asserted in the input
problem, or 𝜑 is a local assumption in a subproof.
Remark. This rule can not be used by the (step…) command. Instead it corresponds
to the dedicated (assume…) command.

Rule 2: hole
𝑖. ⊳ 𝜑 (hole 𝑝1,… , 𝑝𝑛) [𝑎1,… , 𝑎𝑛]
where 𝜑 is any well-formed formula.
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This rule can be used to express holes in the proof. It can be used by solvers as a
placeholder for proof steps that are not yet expressed by the proof rules in this document.
A proof checker must not accept a proof as valid that contains this rule even if the checker
can somehow check this rule. However, it is possible for checkers to have a dedicated
status for proofs that contain this rule and are otherwise valid. Any other tool can accept
or reject proofs that contain this rule.
The premises and arguments are arbitrary, but must follow the syntax for premises

and arguments.

Rule 3: true
𝑖. ⊳ ⊤ true

Rule 4: false
𝑖. ⊳ ¬⊥ false

Rule 5: not_not
𝑖. ⊳ ¬(¬¬𝜑), 𝜑 not_not

Remark. This rule is useful to remove double negations from a clause by resolving a
clause with the double negation on 𝜑.

Rule 6: th_resolution
This rule is the resolution of two or more clauses.
𝑖1. ⊳ 𝑙11, … , 𝑙1𝑘1 (...)

⋮
𝑖𝑛. ⊳ 𝑙𝑛1 , … , 𝑙𝑛𝑘𝑛 (...)
𝑗. ⊳ 𝑙𝑟1𝑠1 , … , 𝑙𝑟𝑚𝑠𝑚 (th_resolution 𝑖1,… , 𝑖𝑛)
where 𝑙𝑟1𝑠1 ,… , 𝑙𝑟𝑚𝑠𝑚 are from 𝑙𝑖𝑗 and are the result of a chain of predicate resolution steps
on the clauses of 𝑖1 to 𝑖𝑛. It is possible that 𝑚 = 0, i.e. that the result is the empty
clause. When performing resolution steps, the rule implicitly merges repeated negations
at the start of the formulas 𝑙𝑖𝑗. For example, the formulas ¬¬¬𝑃 and ¬¬𝑃 can serve as
pivots during resolution. The first formula is interpreted as ¬𝑃 and the second as just 𝑃
for the purpose of performing resolution steps.

This rule is only used when the resolution step is not emitted by the SAT solver. See
the equivalent resolution rule for the rule emitted by the SAT solver.
Remark. The definition given here is very general. The motivation for this is to
ensure the definition covers all possible resolution steps generated by the existing proof
generation code in veriT. It will be restricted after a full review of the code. As a
consequence of this checking this rule is theoretically NP-complete. In practice, however,
the th_resolution-steps produced by veriT are simple. Experience with reconstructing the
step in Isabelle/HOL shows that checking can done by naive decision procedures. The
vast majority of th_resolution-steps are binary resolution steps.

Rule 7: resolution
This rule is equivalent to the th_resolution rule, but it is emitted by the SAT solver
instead of theory reasoners. The differentiation serves only informational purpose.
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Rule 8: tautology
𝑖. ⊳ 𝑙1, …, 𝑙𝑘, …, 𝑙𝑚, …, 𝑙𝑛 (… )
𝑗. ⊳ ⊤ (tautology 𝑖)
and 𝑙𝑘, 𝑙𝑚 are such that

𝑙𝑘 = ¬…¬⏟
𝑜

𝜑

𝑙𝑚 = ¬…¬⏟
𝑝

𝜑

and one of 𝑜, 𝑝 is odd and the other even. Either can be 0.

Rule 9: contraction
𝑖. ⊳ 𝑙1, …, 𝑙𝑛 (… )
𝑗. ⊳ 𝑙𝑘1

, …, 𝑙𝑘𝑚
(contraction 𝑖)

where 𝑚 ≤ 𝑛 and 𝑘1 …𝑘𝑚 is a monotonic map to 1…𝑛 such that 𝑙𝑘1
…𝑙𝑘𝑚

are pairwise
distinct and {𝑙1,… , 𝑙𝑛} = {𝑙𝑘1

,… , 𝑙𝑘𝑚
}. Hence, this rule removes duplicated literals.

Rule 10: subproof
The subproof rule completes a subproof and discharges local assumptions. Every subproof
starts with some assume steps. The last step of the subproof is the conclusion.
𝑖1. ⊳ 𝜑1 assume

⋮
𝑖𝑛. ⊳ 𝜑𝑛 assume

⋮
𝑗. ⊳ 𝜓 (… )
k. ⊳ ¬𝜑1,…, ¬𝜑𝑛, 𝜓 subproof

Rule 11: la_generic
A step of the la_generic rule represents a tautological clause of linear disequalities. It
can be checked by showing that the conjunction of the negated disequalities is unsat-
isfiable. After the application of some strengthening rules, the resulting conjunction is
unsatisfiable, even if integer variables are assumed to be real variables.
A linear inequality is of term of the form

𝑛
∑
𝑖=0

𝑐𝑖 × 𝑡𝑖 + 𝑑1 ⋈
𝑚
∑

𝑖=𝑛+1
𝑐𝑖 × 𝑡𝑖 + 𝑑2

where ⋈ ∈ {≈,<,>,≤,≥}, where 𝑚 ≥ 𝑛, 𝑐𝑖, 𝑑1, 𝑑2 are either integer or real constants,
and for each 𝑖 𝑐𝑖 and 𝑡𝑖 have the same sort. We will write 𝑠1 ⋈ 𝑠2.
Let 𝑙1,… , 𝑙𝑛 be linear inequalities and 𝑎1,… , 𝑎𝑛 rational numbers, then a la_generic

step has the form
𝑖. ⊳ 𝜑1, …, 𝜑𝑜 la_generic [𝑎1, …, 𝑎𝑜]
where 𝜑𝑖 is either ¬𝑙𝑖 or 𝑙𝑖, but never 𝑠1 ≈ 𝑠2.

If the current theory does not have rational numbers, then the 𝑎𝑖 are printed using
integer division. They should, nevertheless, be interpreted as rational numbers. If 𝑑1 or
𝑑2 are 0, they might not be printed.
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To check the unsatisfiability of the negation of 𝜑1 ∨…∨𝜑𝑜 one performs the following
steps for each literal. For each 𝑖, let 𝜑 ∶= 𝜑𝑖 and 𝑎 ∶= 𝑎𝑖.

1. If 𝜑 = 𝑠1 > 𝑠2, then let 𝜑 ∶= 𝑠1 ≤ 𝑠2. If 𝜑 = 𝑠1 ≥ 𝑠2, then let 𝜑 ∶= 𝑠1 < 𝑠2. If
𝜑 = 𝑠1 < 𝑠2, then let 𝜑 ∶= 𝑠1 ≥ 𝑠2. If 𝜑 = 𝑠1 ≤ 𝑠2, then let 𝜑 ∶= 𝑠1 > 𝑠2. This
negates the literal.

2. If 𝜑 = ¬(𝑠1 ⋈ 𝑠2), then let 𝜑 ∶= 𝑠1 ⋈ 𝑠2.

3. Replace 𝜑 by ∑𝑛
𝑖=0 𝑐𝑖 × 𝑡𝑖 −∑𝑚

𝑖=𝑛+1 𝑐𝑖 × 𝑡𝑖 ⋈ 𝑑 where 𝑑 ∶= 𝑑2 − 𝑑1.

4. Now 𝜑 has the form 𝑠1 ⋈ 𝑑. If all variables in 𝑠1 are integer sorted: replace ⋈ 𝑑
according to the table below.

5. If ⋈ is ≈ replace 𝑙 by ∑𝑚
𝑖=0 𝑎 × 𝑐𝑖 × 𝑡𝑖 ≈ 𝑎 × 𝑑, otherwise replace it by ∑𝑚

𝑖=0 |𝑎| ×
𝑐𝑖 × 𝑡𝑖 ≈ |𝑎| × 𝑑.

The replacements that can be performed by step 4 above are
⋈ If 𝑑 is an integer Otherwise
> ≥ 𝑑 + 1 ≥ ⌊𝑑⌋ + 1
≥ ≥ 𝑑 ≥ ⌊𝑑⌋ + 1

Finally, the sum of the resulting literals is trivially contradictory. The sum
𝑜

∑
𝑘=1

𝑚𝑜

∑
𝑖=1

𝑐𝑘𝑖 ∗ 𝑡𝑘𝑖 ⋈
𝑜

∑
𝑘=1

𝑑𝑘

where 𝑐𝑘𝑖 is the constant 𝑐𝑖 of literal 𝑙𝑘, 𝑡𝑘𝑖 is the term 𝑡𝑖 of 𝑙𝑘, and 𝑑𝑘 is the constant 𝑑 of
𝑙𝑘. The operator ⋈ is ≈ if all operators are ≈, > if all are either ≈ or >, and ≥ otherwise.
The 𝑎𝑖 must be such that the sum on the left-hand side is 0 and the right-hand side is
> 0 (or ≥ 0 if ⋈ is >).

Example 11.1. A simple la_generic step in the logic LRA might look like this:

(step t10 (cl (not (> (f a) (f b))) (not (= (f a) (f b))))
:rule la_generic :args (1.0 (- 1.0)))

To verify this we have to check the insatisfiability of (𝑓 𝑎) > (𝑓 𝑏) ∧ (𝑓 𝑎) ≈ (𝑓 𝑏) (step
2). After step 3 we get (𝑓 𝑎) − (𝑓 𝑏) > 0 ∧ (𝑓 𝑎) − (𝑓 𝑏) ≈ 0. Since we don’t have an
integer sort in this logic step 4 does not apply. Finally, after step 5 the conjunction is
(𝑓 𝑎) − (𝑓 𝑏) > 0 ∧ −(𝑓 𝑎) + (𝑓 𝑏) ≈ 0. This sums to 0 > 0, which is a contradiction.

Example 11.2. The following la_generic step is from a QF_UFLIA problem:

(step t11 (cl (not (<= f3 0)) (<= (+ 1 (* 4 f3)) 1))
:rule la_generic :args (1 (div 1 4)))

After normalization we get −𝑓3 ≥ 0 ∧ 4 × 𝑓3 > 0. This time step 4 applies and we can
strengthen this to −𝑓3 ≥ 0∧4×𝑓3 ≥ 1 and after multiplication we get −𝑓3 ≥ 0∧𝑓3 ≥ 1

4 .
Which sums to the contradiction 1

4 ≥ 0.
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Rule 12: lia_generic
This rule is a placeholder rule for integer arithmetic solving. It takes the same form as
la_generic, without the additional arguments.
𝑖. ⊳ 𝜑1, …, 𝜑𝑜 (lia_generic)
with 𝜑𝑖 being linear inequalities. The disjunction 𝜑1∨…∨𝜑𝑛 is a tautology in the theory
of linear integer arithmetic.
Remark. Since this rule can introduce a disjunction of arbitrary linear integer inequal-
ities without any additional hints, proof checking can be NP-hard. Hence, this rule
should be avoided when possible.

Rule 13: la_disequality
𝑖. ⊳ 𝑡1 ≈ 𝑡2 ∨ ¬(𝑡1 ≤ 𝑡2) ∨ ¬(𝑡2 ≤ 𝑡1) (la_disequality)

Rule 14: la_totality
𝑖. ⊳ 𝑡1 ≤ 𝑡2 ∨ 𝑡2 ≤ 𝑡1 (la_totality)

Rule 15: la_tautology
This rule is a linear arithmetic tautology which can be checked without sophisticated
reasoning. It has either the form
𝑖. ⊳ 𝜑 (la_tautology)
where 𝜑 is either a linear inequality 𝑠1 ⋈ 𝑠2 or ¬(𝑠1 ⋈ 𝑠2). After performing step 1 to 3
of the process for checking the la_generic the result is trivially unsatisfiable.
The second form handles bounds on linear combinations. It is binary clause:

𝑖. ⊳ 𝜑1 ∨ 𝜑2 (la_tautology)

It can be checked by using the procedure for la_generic while setting the arguments
to 1. Informally, the rule follows one of several cases:

• ¬(𝑠1 ≤ 𝑑1) ∨ 𝑠1 ≤ 𝑑2 where 𝑑1 ≤ 𝑑2

• 𝑠1 ≤ 𝑑1 ∨ ¬(𝑠1 ≤ 𝑑2) where 𝑑1 = 𝑑2

• ¬(𝑠1 ≥ 𝑑1) ∨ 𝑠1 ≥ 𝑑2 where 𝑑1 ≥ 𝑑2

• 𝑠1 ≥ 𝑑1 ∨ ¬(𝑠1 ≥ 𝑑2) where 𝑑1 = 𝑑2

• ¬(𝑠1 ≤ 𝑑1) ∨ ¬(𝑠1 ≥ 𝑑2) where 𝑑1 < 𝑑2

The inequalities 𝑠1 ⋈ 𝑑 are the result of applying normalization as for the rule la_generic.

Rule 16: bind
The bind rule is used to rename bound variables.

⋮
𝑗. Γ, 𝑦1,… , 𝑦𝑛, 𝑥1 ↦ 𝑦1,… , 𝑥𝑛 ↦ 𝑦𝑛 ⊳ 𝜑 ≈ 𝜑′ (… )
𝑘. ⊳ ∀𝑥1,… , 𝑥𝑛.𝜑 ≈ ∀𝑦1,… , 𝑦𝑛.𝜑′ bind
where the variables 𝑦1,… , 𝑦𝑛 are neither free in ∀𝑥1,… , 𝑥𝑛.𝜑 nor occur in Γ.
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Rule 17: sko_ex
The sko_ex rule skolemizes existential quantifiers.

⋮
𝑗. Γ, 𝑥1 ↦ 𝜀1,… , 𝑥𝑛 ↦ 𝜀𝑛 ⊳ 𝜑 ≈ 𝜓 (… )
𝑘. ⊳ ∃𝑥1,… , 𝑥𝑛.𝜑 ≈ 𝜓 sko_ex
where 𝜀𝑖 stands for 𝜀𝑥𝑖.(∃𝑥𝑖+1,… , 𝑥𝑛.𝜑).

Rule 18: sko_forall
The sko_forall rule skolemizes universal quantifiers.

⋮
𝑗. Γ, 𝑥1 ↦ (𝜀𝑥1.¬𝜑),… , 𝑥𝑛 ↦ (𝜀𝑥𝑛.¬𝜑) ⊳ 𝜑 ≈ 𝜓 (… )
𝑘. ⊳ ∀𝑥1,… , 𝑥𝑛.𝜑 ≈ 𝜓 sko_forall

Rule 19: forall_inst
𝑖. ⊳ ¬(∀𝑥1,… , 𝑥𝑛.𝑃 ) ∨ 𝑃 [𝑥1 ↦ 𝑡1]… [𝑥𝑛 ↦ 𝑡𝑛] forall_inst [(𝑥𝑘1

, 𝑡𝑘1
), … , (𝑥𝑘𝑛

, 𝑡𝑘𝑛
)]

where 𝑘1,… , 𝑘𝑛 is a permutation of 1,… , 𝑛 and 𝑥𝑖 and 𝑘𝑖 have the same sort. The
arguments (𝑥𝑘𝑖

, 𝑡𝑘𝑖
) are printed as (:= xki tki).

Rule 20: refl
𝑗. ⊳ Γ 𝑡1 ≈ 𝑡2 refl
where, if 𝜎 = subst(Γ), the terms 𝑡1𝜎 and 𝑡2 are syntactically equal up to renaming of
bound variables and the orientation of equalities.
Remark. This is the only rule that requires the application of the context.

Rule 21: trans
𝑖1. ⊳ Γ 𝑡1 ≈ 𝑡2 (… )
𝑖2. ⊳ Γ 𝑡2 ≈ 𝑡3 (… )

⋮
𝑖𝑛. ⊳ Γ 𝑡𝑛 ≈ 𝑡𝑛+1 (… )
𝑗. ⊳ Γ 𝑡1 ≈ 𝑡𝑛+1 (trans 𝑖1, … , 𝑖𝑛)

Rule 22: cong
𝑖1. ⊳ Γ 𝑡1 ≈ 𝑢1 (… )
𝑖2. ⊳ Γ 𝑡2 ≈ 𝑢2 (… )

⋮
𝑖𝑛. ⊳ Γ 𝑡𝑛 ≈ 𝑢𝑛 (… )
𝑗. ⊳ Γ (𝑓 𝑡1 ⋯ 𝑡𝑛) ≈ (𝑓 𝑢1 ⋯ 𝑢𝑛) (cong 𝑖1, … , 𝑖𝑛)
where 𝑓 is any function symbol of appropriate sort.

Rule 23: eq_reflexive
𝑖. ⊳ 𝑡 ≈ 𝑡 eq_reflexive

Rule 24: eq_transitive
𝑖. ⊳ ¬(𝑡1 ≈ 𝑡2), … , ¬(𝑡𝑛−1 ≈ 𝑡𝑛), 𝑡1 ≈ 𝑡𝑛 eq_transitive

Rule 25: eq_congruent
𝑖. ⊳ ¬(𝑡1 ≈ 𝑢1), … ,¬(𝑡𝑛 ≈ 𝑢𝑛), (𝑓 𝑡1 ⋯ 𝑡𝑛) ≈ (𝑓 𝑢1 ⋯ 𝑢𝑛) eq_congruent
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Rule 26: eq_congruent_pred
𝑖. ⊳ ¬(𝑡1 ≈ 𝑢1), …,¬(𝑡𝑛 ≈ 𝑢𝑛), (𝑃 𝑡1 ⋯ 𝑡𝑛) ≈ (𝑃𝑢1 ⋯ 𝑢𝑛) eq_congruent_pred
where 𝑃 is a function symbol with co-domain sort Bool.

Rule 27: qnt_cnf
𝑖. ⊳ ¬(∀𝑥1,… , 𝑥𝑛.𝜑) ∨ ∀𝑥𝑘1

,… , 𝑥𝑘𝑚
.𝜑′ qnt_cnf

This rule expresses clausification of a term under a universal quantifier. This is used
by conflicting instantiation. 𝜑′ is one of the clause of the clause normal form of 𝜑. The
variables 𝑥𝑘1

,… , 𝑥𝑘𝑚
are a permutation of 𝑥1,… , 𝑥𝑛 plus additional variables added by

prenexing 𝜑. Normalization is performed in two phases. First, the negative normal form
is formed, then the result is prenexed. The result of the first step is Φ(𝜑, 1) where:

Φ(¬𝜑, 1) ∶= Φ(𝜑, 0)
Φ(¬𝜑, 0) ∶= Φ(𝜑, 1)

Φ(𝜑1 ∨… ∨ 𝜑𝑛, 1) ∶= Φ(𝜑1, 1) ∨ … ∨ Φ(𝜑𝑛, 1)
Φ(𝜑1 ∧… ∧ 𝜑𝑛, 1) ∶= Φ(𝜑1, 1) ∧ … ∧ Φ(𝜑𝑛, 1)
Φ(𝜑1 ∨… ∨ 𝜑𝑛, 0) ∶= Φ(𝜑1, 0) ∧ … ∧ Φ(𝜑𝑛, 0)
Φ(𝜑1 ∧… ∧ 𝜑𝑛, 0) ∶= Φ(𝜑1, 0) ∨ … ∨ Φ(𝜑𝑛, 0)

Φ(𝜑1 → 𝜑2, 1) ∶= (Φ(𝜑1, 0) ∨ Φ(𝜑2, 1)) ∧ (Φ(𝜑2, 0) ∨ Φ(𝜑1, 1))
Φ(𝜑1 → 𝜑2, 0) ∶= (Φ(𝜑1, 1) ∧ Φ(𝜑2, 0)) ∨ (Φ(𝜑2, 1) ∧ Φ(𝜑1, 0))

Φ(ite𝜑1 𝜑2 𝜑3, 1) ∶= (Φ(𝜑1, 0) ∨ Φ(𝜑2, 1)) ∧ (Φ(𝜑1, 1) ∨ Φ(𝜑3, 1))
Φ(ite𝜑1 𝜑2 𝜑3, 0) ∶= (Φ(𝜑1, 1) ∧ Φ(𝜑2, 0)) ∨ (Φ(𝜑1, 0) ∧ Φ(𝜑3, 0))

Φ(∀𝑥1,… , 𝑥𝑛.𝜑, 1) ∶= ∀𝑥1,… , 𝑥𝑛.Φ(𝜑, 1)
Φ(∃𝑥1,… , 𝑥𝑛.𝜑, 1) ∶= ∃𝑥1,… , 𝑥𝑛.Φ(𝜑, 1)
Φ(∀𝑥1,… , 𝑥𝑛.𝜑, 0) ∶= ∃𝑥1,… , 𝑥𝑛.Φ(𝜑, 0)
Φ(∃𝑥1,… , 𝑥𝑛.𝜑, 0) ∶= ∀𝑥1,… , 𝑥𝑛.Φ(𝜑, 0)

Φ(𝜑, 1) ∶= 𝜑
Φ(𝜑, 0) ∶= ¬𝜑

Remark. This is a placeholder rule that combines the many steps done during clausi-
fication.

Rule 28: and
𝑖. ⊳ 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 (… )
𝑗. ⊳ 𝜑𝑘 (and 𝑖)
and 1 ≤ 𝑘 ≤ 𝑛.

Rule 29: not_or
𝑖. ⊳ ¬(𝜑1 ∨ ⋯ ∨ 𝜑𝑛) (… )
𝑗. ⊳ ¬𝜑𝑘 (not_or 𝑖)
and 1 ≤ 𝑘 ≤ 𝑛.
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Rule 30: or
𝑖. ⊳ 𝜑1 ∨ ⋯ ∨ 𝜑𝑛 (… )
𝑗. ⊳ 𝜑1,… , 𝜑𝑛 (or 𝑖)

Remark. This rule deconstructs the or operator into a clause denoted by cl.

Example 30.1. An application of the or rule.

(step t15 (cl (or (= a b) (not (<= a b)) (not (<= b a))))
:rule la_disequality)

(step t16 (cl (= a b) (not (<= a b)) (not (<= b a)))
:rule or :premises (t15))

Rule 31: not_and
𝑖. ⊳ ¬(𝜑1 ∧… ∧ 𝜑𝑛) (… )
𝑗. ⊳ ¬𝜑1,… , ¬𝜑𝑛 (not_and 𝑖)

Rule 32: xor1
𝑖. ⊳ (xor𝜑1 𝜑2) (… )
𝑗. ⊳ 𝜑1, 𝜑2 (xor1 𝑖)

Rule 33: xor2
𝑖. ⊳ (xor𝜑1 𝜑2) (… )
𝑗. ⊳ ¬𝜑1, ¬𝜑2 (xor2 𝑖)

Rule 34: not_xor1
𝑖. ⊳ ¬(xor𝜑1 𝜑2) (… )
𝑗. ⊳ 𝜑1, ¬𝜑2 (not_xor1 𝑖)

Rule 35: not_xor2
𝑖. ⊳ ¬(xor𝜑1 𝜑2) (… )
𝑗. ⊳ ¬𝜑1, 𝜑2 (not_xor2 𝑖)

Rule 36: implies
𝑖. ⊳ 𝜑1 → 𝜑2 (… )
𝑗. ⊳ ¬𝜑1, 𝜑2 (implies 𝑖)
Rule 37: not_implies1
𝑖. ⊳ ¬(𝜑1 → 𝜑2) (… )
𝑗. ⊳ 𝜑1 (not_implies1 𝑖)

Rule 38: not_implies2
𝑖. ⊳ ¬(𝜑1 → 𝜑2) (… )
𝑗. ⊳ ¬𝜑2 (not_implies2 𝑖)

Rule 39: equiv1
𝑖. ⊳ 𝜑1 ≈ 𝜑2 (… )
𝑗. ⊳ ¬𝜑1, 𝜑2 (equiv1 𝑖)

Rule 40: equiv2
𝑖. ⊳ 𝜑1 ≈ 𝜑2 (… )
𝑗. ⊳ 𝜑1, ¬𝜑2 (equiv2 𝑖)
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Rule 41: not_equiv1
𝑖. ⊳ ¬(𝜑1 ≈ 𝜑2) (… )
𝑗. ⊳ 𝜑1, 𝜑2 (not_equiv1 𝑖)

Rule 42: not_equiv2
𝑖. ⊳ ¬(𝜑1 ≈ 𝜑2) (… )
𝑗. ⊳ ¬𝜑1, ¬𝜑2 (not_equiv2 𝑖)

Rule 43: and_pos
𝑖. ⊳ ¬(𝜑1 ∧ ⋯ ∧ 𝜑𝑛), 𝜑𝑘 and_pos
with 1 ≤ 𝑘 ≤ 𝑛.

Rule 44: and_neg
𝑖. ⊳ (𝜑1 ∧ ⋯ ∧ 𝜑𝑛), ¬𝜑1,… , ¬𝜑𝑛 and_neg

Rule 45: or_pos
𝑖. ⊳ ¬(𝜑1 ∨ ⋯ ∨ 𝜑𝑛), 𝜑1,… , 𝜑𝑛 or_pos

Rule 46: or_neg
𝑖. ⊳ (𝜑1 ∨ ⋯ ∨ 𝜑𝑛), ¬𝜑𝑘 or_neg
with 1 ≤ 𝑘 ≤ 𝑛.

Rule 47: xor_pos1
𝑖. ⊳ ¬(xor𝜑1 𝜑2), 𝜑1, 𝜑2 xor_pos1

Rule 48: xor_pos2
𝑖. ⊳ ¬(xor𝜑1 𝜑2), ¬𝜑1, ¬𝜑2 xor_pos2

Rule 49: xor_neg1
𝑖. ⊳ (xor𝜑1 𝜑2), 𝜑1, ¬𝜑2 xor_neg1

Rule 50: xor_neg2
𝑖. ⊳ (xor𝜑1 𝜑2), ¬𝜑1, 𝜑2 xor_neg2

Rule 51: implies_pos
𝑖. ⊳ ¬(𝜑1 → 𝜑2), ¬𝜑1, 𝜑2 implies_pos

Rule 52: implies_neg1
𝑖. ⊳ 𝜑1 → 𝜑2, 𝜑1 implies_neg1

Rule 53: implies_neg2
𝑖. ⊳ 𝜑1 → 𝜑2, ¬𝜑2 implies_neg2

Rule 54: equiv_pos1
𝑖. ⊳ ¬(𝜑1 ≈ 𝜑2), 𝜑1, ¬𝜑2 equiv_pos1

Rule 55: equiv_pos2
𝑖. ⊳ ¬(𝜑1 ≈ 𝜑2), ¬𝜑1, 𝜑2 equiv_pos2

Rule 56: equiv_neg1
𝑖. ⊳ 𝜑1 ≈ 𝜑2, ¬𝜑1, ¬𝜑2 equiv_neg1
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Rule 57: equiv_neg2
𝑖. ⊳ 𝜑1 ≈ 𝜑2, 𝜑1, 𝜑2 equiv_neg2

Rule 58: ite1
𝑖. ⊳ (ite𝜑1 𝜑2 𝜑3) (… )
𝑗. ⊳ 𝜑1, 𝜑3 (ite1 𝑖)

Rule 59: ite2
𝑖. ⊳ (ite𝜑1 𝜑2 𝜑3) (… )
𝑗. ⊳ ¬𝜑1, 𝜑2 (ite2 𝑖)

Rule 60: ite_pos1
𝑖. ⊳ ¬(ite𝜑1 𝜑2 𝜑3), 𝜑1, 𝜑3 (ite_pos1)

Rule 61: ite_pos2
𝑖. ⊳ ¬(ite𝜑1 𝜑2 𝜑3), ¬𝜑1, 𝜑2 (ite_pos2)

Rule 62: ite_neg1
𝑖. ⊳ (ite𝜑1 𝜑2 𝜑3, 𝜑1, ¬𝜑3) (ite_neg1)

Rule 63: ite_neg2
𝑖. ⊳ (ite𝜑1 𝜑2 𝜑3, ¬𝜑1, ¬𝜑2) (ite_neg2)

Rule 64: not_ite1
𝑖. ⊳ ¬(ite𝜑1 𝜑2 𝜑3) (… )
𝑗. ⊳ 𝜑1, ¬𝜑3 (not_ite1 𝑖)

Rule 65: not_ite2
𝑖. ⊳ ¬(ite𝜑1 𝜑2 𝜑3) (… )
𝑗. ⊳ ¬𝜑1, ¬𝜑2 (not_ite2 𝑖)

Rule 66: connective_def
This rule is used to replace connectives by their definition. It can be one of the following:
𝑖. ⊳ Γ (xor𝜑1 𝜑2) ≈ ((¬𝜑1 ∧ 𝜑2) ∨ (𝜑1 ∧ ¬𝜑2)) connective_def

𝑖. ⊳ Γ (𝜑1 ≈ 𝜑2) ≈ ((𝜑1 → 𝜑2) ∧ (𝜑2 → 𝜑1)) connective_def

𝑖. ⊳ Γ (ite𝜑1 𝜑2 𝜑3) ≈ ((𝜑1 → 𝜑2) ∧ (¬𝜑1 → 𝜑3)) connective_def

𝑖. ⊳ Γ (∀𝑥1,… , 𝑥𝑛. 𝜑) ≈ ¬(∃𝑥1,… , 𝑥𝑛. ¬𝜑) connective_def

Rule 67: and_simplify
This rule simplifies an ∧ term by applying equivalence-preserving transformations as
long as possible. Hence, the general form is
𝑖. ⊳ Γ 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ≈ 𝜓 and_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• ⊤ ∧⋯ ∧⊤ ⇒ ⊤

• 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ⇒ 𝜑1 ∧ ⋯ ∧ 𝜑𝑛′ where the right-hand side has all ⊤ literals removed.
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• 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ⇒ 𝜑1 ∧ ⋯ ∧ 𝜑𝑛′ where the right-hand side has all repeated literals
removed.

• 𝜑1 ∧ ⋯ ∧ ⊥ ∧ ⋯ ∧ 𝜑𝑛 ⇒ ⊥

• 𝜑1 ∧ ⋯ ∧ 𝜑𝑖 ∧ ⋯ ∧ 𝜑𝑗 ∧ ⋯ ∧ 𝜑𝑛 ⇒ ⊥ and 𝜑𝑖, 𝜑𝑗 are such that

𝜑𝑖 = ¬…¬⏟
𝑛

𝜓

𝜑𝑗 = ¬…¬⏟
𝑚

𝜓

and one of 𝑛,𝑚 is odd and the other even. Either can be 0.

Rule 68: or_simplify
This rule simplifies an ∨ term by applying equivalence-preserving transformations as
long as possible. Hence, the general form is
𝑖. ⊳ Γ (𝜑1 ∨ ⋯ ∨ 𝜑𝑛) ≈ 𝜓 or_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• ⊥ ∨⋯ ∨⊥ ⇒ ⊥

• 𝜑1 ∨ ⋯ ∨ 𝜑𝑛 ⇒ 𝜑1 ∨ ⋯ ∨ 𝜑𝑛′ where the right-hand side has all ⊥ literals removed.

• 𝜑1 ∨ ⋯ ∨ 𝜑𝑛 ⇒ 𝜑1 ∨ ⋯ ∨ 𝜑𝑛′ where the right-hand side has all repeated literals
removed.

• 𝜑1 ∨ ⋯ ∨ ⊤ ∨ ⋯ ∨ 𝜑𝑛 ⇒ ⊤

• 𝜑1 ∨ ⋯ ∨ 𝜑𝑖 ∨ ⋯ ∨ 𝜑𝑗 ∨ ⋯ ∨ 𝜑𝑛 ⇒ ⊤ and 𝜑𝑖, 𝜑𝑗 are such that

𝜑𝑖 = ¬…¬⏟
𝑛

𝜓

𝜑𝑗 = ¬…¬⏟
𝑚

𝜓

and one of 𝑛,𝑚 is odd and the other even. Either can be 0.

Rule 69: not_simplify
This rule simplifies an ¬ term by applying equivalence-preserving transformations as
long as possible. Hence, the general form is
𝑖. ⊳ Γ ¬𝜑 ≈ 𝜓 not_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• ¬(¬𝜑) ⇒ 𝜑

• ¬⊥ ⇒ ⊤
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• ¬⊤ ⇒ ⊥

Rule 70: implies_simplify
This rule simplifies an → term by applying equivalence-preserving transformations as
long as possible. Hence, the general form is
𝑖. ⊳ Γ 𝜑1 → 𝜑2 ≈ 𝜓 implies_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• ¬𝜑1 → ¬𝜑2 ⇒ 𝜑2 → 𝜑1

• ⊥ → 𝜑 ⇒ ⊤

• 𝜑 → ⊤ ⇒ ⊤

• ⊤ → 𝜑 ⇒ 𝜑

• 𝜑 → ⊥ ⇒ ¬𝜑

• 𝜑 → 𝜑 ⇒ ⊤

• ¬𝜑 → 𝜑 ⇒ 𝜑

• 𝜑 → ¬𝜑 ⇒ ¬𝜑

Rule 71: equiv_simplify
This rule simplifies a formula with the head symbol ≈ ∶ Bool Bool Bool by applying
equivalence-preserving transformations as long as possible. Hence, the general form is
𝑖. ⊳ Γ (𝜑1 ≈ 𝜑2) ≈ 𝜓 equiv_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• (¬𝜑1 ≈ ¬𝜑2) ⇒ (𝜑1 ≈ 𝜑2)

• (𝜑 ≈ 𝜑) ⇒ ⊤

• (𝜑 ≈ ¬𝜑) ⇒ ⊥

• (¬𝜑 ≈ 𝜑) ⇒ ⊥

• (⊤ ≈ 𝜑) ⇒ 𝜑

• (𝜑 ≈ ⊤) ⇒ 𝜑

• (⊥ ≈ 𝜑) ⇒ ¬𝜑

• (𝜑 ≈ ⊥) ⇒ ¬𝜑
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Rule 72: bool_simplify
This rule simplifies a boolean term by applying equivalence-preserving transformations
as long as possible. Hence, the general form is
𝑖. ⊳ Γ 𝜑 ≈ 𝜓 bool_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• ¬(𝜑1 → 𝜑2) ⇒ (𝜑1 ∧ ¬𝜑2)

• ¬(𝜑1 ∨ 𝜑2) ⇒ (¬𝜑1 ∧ ¬𝜑2)

• ¬(𝜑1 ∧ 𝜑2) ⇒ (¬𝜑1 ∨ ¬𝜑2)

• (𝜑1 → (𝜑2 → 𝜑3)) ⇒ (𝜑1 ∧ 𝜑2) → 𝜑3

• ((𝜑1 → 𝜑2) → 𝜑2) ⇒ (𝜑1 ∨ 𝜑2)

• (𝜑1 ∧ (𝜑1 → 𝜑2)) ⇒ (𝜑1 ∧ 𝜑2)

• ((𝜑1 → 𝜑2) ∧ 𝜑1) ⇒ (𝜑1 ∧ 𝜑2)

Rule 73: ac_simp
This rule simplifies nested occurrences of ∨ or ∧:
𝑖. ⊳ Γ 𝜓 ≈ 𝜑1 ∘ ⋯ ∘ 𝜑𝑛 ac_simp
where ∘ ∈ {∨, ∧} and 𝜓 is a nested application of ∘. The literals 𝜑𝑖 are literals of the
flattening of 𝜓 with duplicates removed.

Rule 74: ite_simplify
This rule simplifies an if-then-else term by applying equivalence-preserving transforma-
tions until fixed point12 It has the form
𝑖. ⊳ Γ (ite𝜑 𝑡1 𝑡2) ≈ 𝑢 ite_simplify
where 𝑢 is the transformed term.

The possible transformations are:

• (ite⊤𝑡1 𝑡2) ⇒ 𝑡1

• (ite⊥𝑡1 𝑡2) ⇒ 𝑡2

• (ite𝜓 𝑡 𝑡) ⇒ 𝑡

• (ite¬𝜑 𝑡1 𝑡2) ⇒ (ite𝜑 𝑡2 𝑡1)

• (ite𝜓 (ite𝜓 𝑡1 𝑡2) 𝑡3) ⇒ (ite𝜓 𝑡1 𝑡3)

• (ite𝜓 𝑡1 (ite𝜓 𝑡2 𝑡3) ⇒ (ite𝜓 𝑡1 𝑡3)

• (ite𝜓⊤⊥) ⇒ 𝜓
12Note however that the order of the application is important, since the set of rules is not confluent. For

example, the term (ite⊤ 𝑡1 𝑡2 ≈ 𝑡1) can be simplified into both 𝑝 and (¬(¬𝑝)) depending on the order
of applications.
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• (ite𝜓⊥⊤) ⇒ ¬𝜓

• (ite𝜓⊤𝜑) ⇒ 𝜓 ∨ 𝜑

• (ite𝜓𝜑⊥) ⇒ 𝜓 ∧ 𝜑

• (ite𝜓⊥𝜑) ⇒ ¬𝜓 ∧ 𝜑

• (ite𝜓𝜑⊤) ⇒ ¬𝜓 ∨ 𝜑

Rule 75: qnt_simplify
This rule simplifies a ∀-formula with a constant predicate.
𝑖. ⊳ Γ (∀𝑥1,… , 𝑥𝑛.𝜑) ≈ 𝜑 qnt_simplify
where 𝜑 is either ⊤ or ⊥.

Rule 76: onepoint
The onepoint rule is the “one-point-rule”. That is: it eliminates quantified variables that
can only have one value.

⋮
𝑗. Γ, 𝑥𝑘1

,… , 𝑥𝑘𝑚
, 𝑥𝑗1 ↦ 𝑡𝑗1 ,… , 𝑥𝑗𝑜 ↦ 𝑡𝑗𝑜 ⊳ 𝜑 ≈ 𝜑′ (… )

𝑘. ⊳ 𝑄𝑥1,… , 𝑥𝑛.𝜑 ≈ 𝑄𝑥𝑘1
,… , 𝑥𝑘𝑚

.𝜑′ onepoint
where 𝑄 ∈ {∀, ∃}, 𝑛 = 𝑚+𝑜, 𝑘1,… , 𝑘𝑚 and 𝑗1,… , 𝑗𝑜 are monotone mappings to 1,… , 𝑛,
and no 𝑥𝑘𝑖

appears in 𝑥𝑗1 ,… , 𝑥𝑗𝑜 .
The terms 𝑡𝑗1 ,… , 𝑡𝑗𝑜 are the points of the variables 𝑥𝑗1 ,… , 𝑥𝑗𝑜 . Points are defined by

equalities 𝑥𝑖 ≈ 𝑡𝑖 with positive polarity in the term 𝜑.
Remark. Since an eliminated variable 𝑥𝑖 might appear free in a term 𝑡𝑗, it is necessary
to replace 𝑥𝑖 with 𝑡𝑖 inside 𝑡𝑗. While this substitution is performed correctly, the proof
for it is currently missing.

Example 76.1. An application of the onepoint rule on the term (∀𝑥, 𝑦. 𝑥 ≈ 𝑦 →
(𝑓𝑥) ∧ (𝑓 𝑦)) look like this:

(anchor :step t3 :args ((:= y x)))
(step t3.t1 (cl (= x y)) :rule refl)
(step t3.t2 (cl (= (= x y) (= x x)))

:rule cong :premises (t3.t1))
(step t3.t3 (cl (= x y)) :rule refl)
(step t3.t4 (cl (= (f y) (f x)))

:rule cong :premises (t3.t3))
(step t3.t5 (cl (= (and (f x) (f y)) (and (f x) (f x))))

:rule cong :premises (t3.t4))
(step t3.t6 (cl (= (=> (= x y) (and (f x) (f y)))

(=> (= x x) (and (f x) (f x)))))
:rule cong :premises (t3.t2 t3.t5))

(step t3 (cl (=
(forall ((x S) (y S)) (=> (= x y) (and (f x) (f y))))
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(forall ((x S)) (=> (= x x) (and (f x) (f x))))))
:rule qnt_simplify)

Rule 77: qnt_join
𝑖. ⊳ Γ 𝑄𝑥1,… , 𝑥𝑛. (𝑄𝑥𝑛+1,… , 𝑥𝑚. 𝜑) ≈ 𝑄𝑥𝑘1

,… , 𝑥𝑘𝑜
. 𝜑 qnt_join

where 𝑚 > 𝑛 and 𝑄 ∈ {∀, ∃}. Furthermore, 𝑘1,… , 𝑘𝑜 is a monotonic map to 1,… ,𝑚
such that 𝑥𝑘1

,… , 𝑥𝑘𝑜
are pairwise distinct, and {𝑥1,… , 𝑥𝑚} = {𝑥𝑘1

,… , 𝑥𝑘𝑜
}.

Rule 78: qnt_rm_unused
𝑖. ⊳ Γ 𝑄𝑥1,… , 𝑥𝑛. 𝜑 ≈ 𝑄𝑥𝑘1

,… , 𝑥𝑘𝑚
. 𝜑 qnt_rm_unused

where 𝑚 ≤ 𝑛 and 𝑄 ∈ {∀, ∃}. Furthermore, 𝑘1,… , 𝑘𝑚 is a monotonic map to 1,… , 𝑛
and if 𝑥 ∈ {𝑥𝑗 | 𝑗 ∈ {1,… , 𝑛} ∧ 𝑗 ∈ ̸{𝑘1,… , 𝑘𝑚}} then 𝑥 is not free in 𝑃.

Rule 79: eq_simplify
This rule simplifies an ≈ term by applying equivalence-preserving transformations as
long as possible. Hence, the general form is
𝑖. ⊳ Γ (𝑡1 ≈ 𝑡2) ≈ 𝜑 eq_simplify
where 𝜓 is the transformed term.

The possible transformations are:

• 𝑡 ≈ 𝑡 ⇒ ⊤

• (𝑡1 ≈ 𝑡2) ⇒ ⊥ if 𝑡1 and 𝑡2 are different numeric constants.

• ¬(𝑡 ≈ 𝑡) ⇒ ⊥ if 𝑡 is a numeric constant.

Rule 80: div_simplify
This rule simplifies a division by applying equivalence-preserving transformations. The
general form is
𝑖. ⊳ Γ (𝑡1 / 𝑡2) ⇒ 𝑡3 div_simplify
The possible transformations are:

• 𝑡 / 𝑡 ⇒ 1

• 𝑡 / 1 ⇒ 𝑡

• 𝑡1 / 𝑡2 ⇒ 𝑡3 if 𝑡1 and 𝑡2 are constants and 𝑡3 is 𝑡1 divided by 𝑡2 according to the
semantics of the current theory.

Rule 81: prod_simplify
This rule simplifies a product by applying equivalence-preserving transformations as long
as possible. The general form is
𝑖. ⊳ Γ 𝑡1 ×⋯× 𝑡𝑛 ≈ 𝑢 prod_simplify
where 𝑢 is either a constant or a product.

The possible transformations are:

• 𝑡1 ×⋯× 𝑡𝑛 ⇒ 𝑢 where all 𝑡𝑖 are constants and 𝑢 is their product.
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• 𝑡1 ×⋯× 𝑡𝑛 ⇒ 0 if any 𝑡𝑖 is 0.

• 𝑡1 ×⋯× 𝑡𝑛 ⇒ 𝑐× 𝑡𝑘1
×⋯× 𝑡𝑘𝑛

where 𝑐 is the product of the constants of 𝑡1,… , 𝑡𝑛
and 𝑡𝑘1

,… , 𝑡𝑘𝑛
is 𝑡1,… , 𝑡𝑛 with the constants removed.

• 𝑡1 ×⋯× 𝑡𝑛 ⇒ 𝑡𝑘1
×⋯× 𝑡𝑘𝑛

: same as above if 𝑐 is 1.

Rule 82: unary_minus_simplify
This rule is either
𝑖. ⊳ Γ −(−𝑡) ≈ 𝑡 unary_minus_simplify
or
𝑖. ⊳ Γ −𝑡 ≈ 𝑢 unary_minus_simplify
where 𝑢 is the negated numerical constant 𝑡.

Rule 83: minus_simplify
This rule simplifies a subtraction by applying equivalence-preserving transformations.
The general form is
𝑖. ⊳ Γ 𝑡1 − 𝑡2 ≈ 𝑢 minus_simplify
The possible transformations are:

• 𝑡 − 𝑡 ⇒ 0

• 𝑡1−𝑡2 ⇒ 𝑡3 where 𝑡1 and 𝑡2 are numerical constants and 𝑡3 is 𝑡2 subtracted from 𝑡1.

• 𝑡 − 0 ⇒ 𝑡

• 0 − 𝑡 ⇒ −𝑡

Rule 84: sum_simplify
This rule simplifies a sum by applying equivalence-preserving transformations as long as
possible. The general form is
𝑖. ⊳ Γ 𝑡1 +⋯+ 𝑡𝑛 ≈ 𝑢 sum_simplify
where 𝑢 is either a constant or a product.

The possible transformations are:

• 𝑡1 +⋯+ 𝑡𝑛 ⇒ 𝑐 where all 𝑡𝑖 are constants and 𝑐 is their sum.

• 𝑡1 + ⋯ + 𝑡𝑛 ⇒ 𝑐 + 𝑡𝑘1
+ ⋯ + 𝑡𝑘𝑛

where 𝑐 is the sum of the constants of 𝑡1,… , 𝑡𝑛
and 𝑡𝑘1

,… , 𝑡𝑘𝑛
is 𝑡1,… , 𝑡𝑛 with the constants removed.

• 𝑡1 +⋯+ 𝑡𝑛 ⇒ 𝑡𝑘1
+⋯+ 𝑡𝑘𝑛

: same as above if 𝑐 is 0.

Rule 85: comp_simplify
This rule simplifies a comparison by applying equivalence-preserving transformations as
long as possible. The general form is
𝑖. ⊳ Γ 𝑡1 ⋈ 𝑡𝑛 ≈ 𝜓 comp_simplify
where ⋈ is as for the proof rule la_generic, but never ≈.

The possible transformations are:
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• 𝑡1 < 𝑡2 ⇒ 𝜑 where 𝑡1 and 𝑡2 are numerical constants and 𝜑 is ⊤ if 𝑡1 is strictly
greater than 𝑡2 and ⊥ otherwise.

• 𝑡 < 𝑡 ⇒ ⊥

• 𝑡1 ≤ 𝑡2 ⇒ 𝜑 where 𝑡1 and 𝑡2 are numerical constants and 𝜑 is ⊤ if 𝑡1 is greater
than 𝑡2 or equal and ⊥ otherwise.

• 𝑡 ≤ 𝑡 ⇒ ⊤

• 𝑡1 ≥ 𝑡2 ⇒ 𝑡2 ≤ 𝑡1

• 𝑡1 < 𝑡2 ⇒ ¬(𝑡2 ≤ 𝑡1)

• 𝑡1 > 𝑡2 ⇒ ¬(𝑡1 ≤ 𝑡2)

Rule 86: let
This rule eliminates let. It has the form
𝑖1. Γ ⊳ 𝑡1 ≈ 𝑠1 (… )

⋮
𝑖𝑛. Γ ⊳ 𝑡𝑛 ≈ 𝑠𝑛 (… )

⋮
𝑗. Γ, 𝑥1 ↦ 𝑠1,… , 𝑥𝑛 ↦ 𝑠𝑛 ⊳ 𝑢 ≈ 𝑢′ (… )
𝑘. Γ ⊳ (let𝑥1 = 𝑡1, … , 𝑥𝑛 = 𝑡𝑛 in𝑢) ≈ 𝑢′ (let 𝑖1, …, 𝑖𝑛)
The premise 𝑖1,… , 𝑖𝑛 must be in the same subproof as the let step. If for 𝑡𝑖 ≈ 𝑠𝑖 the

𝑡𝑖 and 𝑠𝑖 are syntactically equal, the premise is skipped.

Rule 87: distinct_elim
This rule eliminates the distinct predicate. If called with one argument this predicate
always holds:
𝑖. ⊳ Γ (distinct 𝑡) ≈ ⊤ distinct_elim

If applied to terms of type Bool more than two terms can never be distinct, hence
only two cases are possible:
𝑖. ⊳ Γ (distinct𝜑𝜓) ≈ ¬(𝜑 ≈ 𝜓) distinct_elim
and
𝑖. ⊳ Γ (distinct𝜑1 𝜑2 𝜑3 …) ≈ ⊥ distinct_elim

The general case is
𝑖. ⊳ Γ (distinct 𝑡1 … 𝑡𝑛) ≈ ⋀𝑛

𝑖=1
⋀𝑛

𝑗=𝑖+1
𝑡𝑖 ≉ 𝑡𝑗 distinct_elim

Rule 88: la_rw_eq
𝑖. ⊳ (𝑡 ≈ 𝑢) ≈ (𝑡 ≤ 𝑢 ∧ 𝑢 ≤ 𝑡) la_rw_eq

Rule 89: nary_elim
This rule replaces 𝑛-ary operators with their equivalent application of the binary operator.
It is never applied to ∧ or ∨.
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Three cases are possible. If the operator ∘ is left associative, then the rule has the form
𝑖. ⊳ Γ ○𝑛

𝑖=1𝑡𝑖 ≈ (… (𝑡1 ∘ 𝑡2) ∘ 𝑡3) ∘ ⋯ 𝑡𝑛) nary_elim

If the operator ∘ is right associative, then the rule has the form
𝑖. ⊳ Γ ○𝑛

𝑖=1𝑡𝑖 ≈ (𝑡1 ∘ ⋯ ∘ (𝑡𝑛−2 ∘ (𝑡𝑛−1 ∘ 𝑡𝑛)… ) nary_elim

If the operator is chainable, then it has the form
𝑖. ⊳ Γ ○𝑛

𝑖=1𝑡𝑖 ≈ (𝑡1 ∘ 𝑡2) ∧ (𝑡2 ∘ 𝑡3) ∧ ⋯ ∧ (𝑡𝑛−1 ∘ 𝑡𝑛) nary_elim

Rule 90: bfun_elim
𝑖. ⊳ 𝜓 (… )
𝑗. ⊳ 𝜑 (bfun_elim 𝑖)

The formula 𝜑 is 𝜓 after boolean functions have been simplified. This happens in a
two step process. Both steps recursively iterate over 𝜓. The first step expands quantified
variable of type Bool. Hence, (∃𝑥. 𝑡) becomes 𝑡[𝑥 ↦ ⊥] ∨ 𝑡[𝑥 ↦ ⊤] and (∀𝑥. 𝑡) becomes
𝑡[𝑥 ↦ ⊥] ∧ 𝑡[𝑥 ↦ ⊤]. If 𝑛 variables of sort Bool appear in a quantifier, the disjunction
(conjunction) has 2𝑛 terms. Each term replaces the variables in 𝑡 according to the bits
of a number which is increased by one for each subsequent term starting from zero. The
left-most variable corresponds to the least significant bit.

The second step expands function argument of boolean types by introducing appropri-
ate if-then-else terms. For example, consider (𝑓 𝑥𝑃 𝑦) where 𝑃 is some formula. Then we
replace this term by (ite𝑃 (𝑓 𝑥⊤ 𝑦) (𝑓 𝑥⊥𝑦)). If the argument is already the constant
⊤ or ⊥, it is ignored.

Rule 91: ite_intro
𝑖. ⊳ 𝑡 ≈ (𝑡′ ∧ 𝑢1 ∧… ∧ 𝑢𝑛) (ite_intro)

The term 𝑡 (the formula 𝜑) contains the ite operator. Let 𝑠1,… , 𝑠𝑛 be the terms
starting with ite, i.e. 𝑠𝑖 ∶= ite𝜓𝑖 𝑟𝑖 𝑟′𝑖, then 𝑢𝑖 has the form

ite𝜓𝑖 (𝑠𝑖 ≈ 𝑟𝑖) (𝑠𝑖 ≈ 𝑟′𝑖)

The term 𝑡′ is equal to the term 𝑡 up to the reordering of equalities where one argument
is an ite term.
Remark. This rule stems from the introduction of fresh constants for if-then-else terms
inside veriT. Internally 𝑠𝑖 is a new constant symbol and the 𝜑 on the right side of the
equality is 𝜑 with the if-then-else terms replaced by the constants. Those constants are
unfolded during proof printing. Hence, the slightly strange form and the reordering of
equalities.

Rule 92: bitblast_extract
𝑖. ⊳ ((extract 𝑗 𝑖) 𝑥) ≈ (bbT 𝜑𝑖 … 𝜑𝑗) (bitblast_extract)

where the formulas 𝜑𝑘 are (bitOf𝑘 𝑥) for 𝑖 ≤ 𝑘 ≤ 𝑗.
Alternatively, the rule may also be phrased as a “short-circuiting” of the above when

𝑥 is a bbT application:
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𝑖. ⊳ ((extract 𝑗 𝑖) (bbT 𝑥0 … 𝑥𝑖 … 𝑥𝑗 … 𝑥𝑛)) ≈ (bbT 𝑥𝑖 … 𝑥𝑗) (bitblast_extract)

This alternative is based on the validity of the equality
bitOf𝑘 (bbT 𝑥0 … 𝑥𝑖 … 𝑥𝑗 … 𝑥𝑛) ≈ 𝑥𝑘

for any bit-vector 𝑥 of size 𝑛 + 1, where 0 ≤ 𝑘 ≤ 𝑛.

Rule 93: bitblast_ult
𝑖. ⊳ (bvult 𝑥 𝑦) ≈ res𝑛−1 (bitblast_ult)
in which both 𝑥 and 𝑦 must have the same type (BitVec 𝑛) and, for 𝑖 ≥ 0
res0 = ¬(bitOf0 𝑥) ∧ (bitOf0 𝑦)
res𝑖+1 = (((bitOf𝑖+1 𝑥) ≈ (bitOf𝑖+1 𝑦)) ∧ res𝑖) ∨ (¬(bitOf𝑖+1 𝑥) ∧ (bitOf𝑖+1 𝑦))

Alternatively, the rule may also be phrased as a “short-circuiting” of the above when 𝑥
and 𝑦 are “bbT” applications. So given that

𝑥 = (bbT 𝑥0 … 𝑥𝑖 … 𝑥𝑗 … 𝑥𝑛)
𝑦 = (bbT 𝑦0 … 𝑦𝑖 … 𝑦𝑗 … 𝑦𝑛)

then “res” can be defined, for 𝑖 ≥ 0, as
res0 = ¬𝑥0 ∧ 𝑦0
res𝑖+1 = ((𝑥𝑖+1 ≈ 𝑦𝑖+1) ∧ res𝑖) ∨ (¬𝑥𝑖+1 ∧ 𝑦𝑖+1)

Rule 94: bitblast_add
𝑖. ⊳ (bvadd 𝑥 𝑦) ≈ 𝐴1 (bitblast_add)
in which both 𝑥 and 𝑦 must have the same type (BitVec 𝑛). The term “𝐴1” is

(bbT (((bitOf0 𝑥)xor (bitOf0 𝑦))xor carry0)
(((bitOf1 𝑥)xor (bitOf1 𝑦))xor carry1)
…
(((bitOf𝑛−1 𝑥)xor (bitOf𝑛−1 𝑦))xor carry𝑛−1))

and for 𝑖 ≥ 0
carry0 = ⊥
carry𝑖+1 = ((bitOf𝑖 𝑥) ∧ (bitOf𝑖 𝑦)) ∨ (((bitOf𝑖 𝑥)xor (bitOf𝑖 𝑦)) ∧ carry𝑖)

Alternatively, the rule may also be phrased as a “short-circuiting” of the above when 𝑥
and 𝑦 are “bbT” applications. So given that

𝑥 = (bbT 𝑥0 … 𝑥𝑖 … 𝑥𝑗 … 𝑥𝑛)
𝑦 = (bbT 𝑦0 … 𝑦𝑖 … 𝑦𝑗 … 𝑦𝑛)

then the rule can be alternatively phrased as
𝑖. ⊳ (bvadd 𝑥 𝑦) ≈ 𝐴2 (bitblast_add)
with 𝐴2 ∶= (bbT (𝑥0 xor 𝑦0)xor carry0 … (𝑥𝑛−1 xor 𝑦𝑛−1)xor carry𝑛−1) and “carry”
being defined, for 𝑖 ≥ 0, as

carry0 = ⊥
carry𝑖+1 = (𝑥𝑖 ∧ 𝑦𝑖) ∨ ((𝑥𝑖 xor 𝑦𝑖) ∧ carry𝑖)
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5.3 Index of Rules

ac_simp, 39
and, 33
and_neg, 35
and_pos, 35
and_simplify, 36
assume, 27

bfun_elim, 44
bind, 31
bitblast_add, 45
bitblast_extract, 44
bitblast_ult, 45
bool_simplify, 38

comp_simplify, 42
cong, 32
connective_def, 36
contraction, 29

distinct_elim, 43
div_simplify, 41

eq_congruent, 32
eq_congruent_pred, 32
eq_reflexive, 32
eq_simplify, 41
eq_transitive, 32
equiv1, 34
equiv2, 34
equiv_neg1, 35
equiv_neg2, 35
equiv_pos1, 35
equiv_pos2, 35
equiv_simplify, 38

false, 28
forall_inst, 32

hole, 27

implies, 34
implies_neg1, 35
implies_neg2, 35

implies_pos, 35
implies_simplify, 38
ite1, 36
ite2, 36
ite_intro, 44
ite_neg1, 36
ite_neg2, 36
ite_pos1, 36
ite_pos2, 36
ite_simplify, 39

la_disequality, 31
la_generic, 29
la_rw_eq, 43
la_tautology, 31
la_totality, 31
let, 43
lia_generic, 31

minus_simplify, 42

nary_elim, 43
not_and, 34
not_equiv1, 35
not_equiv2, 35
not_implies1, 34
not_implies2, 34
not_ite1, 36
not_ite2, 36
not_not, 28
not_or, 33
not_simplify, 37
not_xor1, 34
not_xor2, 34

onepoint, 40
or, 33
or_neg, 35
or_pos, 35
or_simplify, 37

prod_simplify, 41
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qnt_cnf, 33
qnt_join, 41
qnt_rm_unused, 41
qnt_simplify, 40

refl, 32
resolution, 28

sko_ex, 31
sko_forall, 32
subproof, 29
sum_simplify, 42

tautology, 29
th_resolution, 28
trans, 32
true, 28

unary_minus_simplify, 42

xor1, 34
xor2, 34
xor_neg1, 35
xor_neg2, 35
xor_pos1, 35
xor_pos2, 35
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Changelog
Unreleased
Proof rules:

• Addition of a section describing bitvector proofs.

• Bitblasting rules: bitblast_extract, bitblast_add, bitblast_ult.

Breaking changes:

• Allow arbitrary extra annotations in assume commands.

Clarifications and corrected errors:

• Clarify that the :args annotation in anchor can be omitted if the list is empty.

• Fix mistake in proof grammar. It now uses the context_annotation non-terminal
in the rule for the anchor command.

0.3 — 2023-02-10
This release overhauls the entire document, but introduces only few changes to the proof
format itself.

The standard now specifies that assume commands can only be issued at the start of
the proof or right after an anchor command.
Beyond many smaller clarifications and typographic improvements, the following

changes are implemented in this release.

• Add an abstract proof checking procedure to clarify the semantics of the proof
format.

• Add a description of the semantics of contexts based on λ-terms.

• List all transformations that are implicit in Alethe proofs.

• Change the notation used for terms from first-order style (e.g., 𝑓(𝑥, 𝑔(𝑦))) to higher-
order style (e.g., (𝑓 𝑥 (𝑔 𝑦))). This is only a change in notation – the used logic
remains many-sorted first-order logic.

• Eliminate the distinction between if-and-only-if and equality. Instead, use equality
(the symbol ≈) with appropriate sorts.

• Add an index that lists all proof rules.

Proof rules:

• The rule implies_simplify is no longer allowed to perform the simplification (𝜑1 →
𝜑2) → 𝜑2 ⇒ 𝜑1 ∨ 𝜑2. This is now covered by bool_simplify.
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0.2 — 2022-12-19
This is an intermediate release. It collects all changes to the original specification
document before the major changes that were implemented as part of Hans-Jörg Schurr’s
PhD thesis. These changes will be reflected in release 0.3.

This release implements major changes to the structure of the document to clarify the
difference between the language and the rules. The language has a formal definition and
a proof of soundness. The syntax describes how proofs are encoded in the text file.
The syntax was extended to allow extra annotations. Tools consuming Alethe proofs

must be able to ignore such extra annotations.
List of rules:

• Improve description of sko_ex.

• Add hole rule to allow holes. A proof that contains steps that use this rule is not
valid.

Corrections:

• Grammar: the choice binder can only bind one variable.

Clarifications:

• Clarify functionality of choice in introduction.

• Add illustrating example to introduction.

• Normalize printing of (variable, term) arguments in the abstract notation.

• Fix linear arithmetic example in introduction.

• Change syntax of abstract proof steps to be clearer.

0.1 – 2021-07-10
This is the first public release of this document. It coincides with the seventh PxTP
Workshop.
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abstraction
lambda, 7, 16

Alethe, 4
anchor, 10
assumption, 5

binder, 15
bitblasting, 21
bitvector, 21

choice, 8
context, 5, 6, 10, 15

calculated, 13

lambda calculus, 15
lemma, 5

metaterms, 15

proof, 5

valid, 15
well-formed, 15

proof checker, 3

rule
concluding, 10

S-expression, 3
step, 5

outermost, 15
subproof, 5

first-innermost, 13
valid, 14

substitution, 4
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well-formed, 13
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